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 Advanced center-pivot irrigation techniques can break apart field 
into 2 degree pie slices (Variable Speed, up to 180 management 
zones per field) and individual nozzle controls (Variable Rate, up to 
5400 management zones field) 

 Clear need for developing pragmatic soil moisture monitoring 
techniques to harness existing irrigation technology for optimal water 
management  

The precision ag. water monitoring problem 

8 Images courtesy of Valmont Inc. 

http://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&docid=4-7BqjRae_hs5M&tbnid=xTFNtZkAvQ6tiM:&ved=0CAUQjRw&url=http://www.valleyirrigation.com/valley-irrigation/ae/home&ei=ChOWUsmiJMv9oASfzoCICQ&bvm=bv.57155469,d.aWc&psig=AFQjCNGaIqotgYqW-mJVioWoAbicjc4I3g&ust=1385652961145078


• 16% Of National Irrigated Land Is In Nebraska 
• 90% Of Water Withdrawal Is For Irrigation 

~ 93,000 Active Irrigation Wells  
     $6-8 Billion Investment 

Irrigation 
Well 

~60,000 center-pivot irrigation systems in Nebraska alone!  

Irrigation Agriculture 

Figures courtesy of D. Martin (UNL) 
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Lab Group Summary 
Research: Understand the flow of water through natural and 
human dominated ecosystems 
 
Extension: Expose or incorporate useful hydrogeophyscial 
technologies into practice of stakeholders across the state.  
How many inches of water can this technology save? 
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A Comparison of Neutron Probes 

http://sanangelo.tamu.edu/agronomy/sorghum/neutron.htm 

• Essentially same detector but 
with updated electronics and 
high voltage NPMs 

• Same basic physics as in-situ 
neutron probe 

• Passive sensor, uses cosmic-ray 
neutrons as source 

• Relates fast neutrons to water 
content instead of slow or 
thermal neutrons 

• Footprint is ~1000x larger 
(density of soil vs. air) 

• Probe sees about top 30 cm  
• In-situ probe considered gold 

standard in agronomy and soil 
physics  



1 m 100 m 10 km 1000 km 

1 minute 

1 hour 

1 day 

1 month 

1 year 

Adapted from Robinson (2008) 

TDR Sensor Array Satellite Remote Sensing 

Airborne Remote Sensing 

Cosmic-ray Probe and Rover 

Mobile TDR & EM 

Measurements of Soil Moisture 
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How to Train Your Point Sensor  

13 

June-July 2014, near Central City, NE 
Installed 12 profiles of Watermark sensors 
and 1 cosmic-ray sensor  

In collaboration with S. Irmak, A. Kilic, and A. Diotto 
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Field is fairly flat, homogeneous 
vegetation, sandy loam soil texture,  
ideal setting for homogeneity?  

200m 

In collaboration with S. Irmak, A. Kilic, and A. Diotto 

How to Train Your Point Sensor  
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How to Train Your Point Sensor  
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How to Train Your Point Sensor  

Following Vachaud et al. 
(1985) and others 
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How to Train Your Mesonet? 

Wang and Franz (2015) VZJ in press 
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How to Train Your Mesonet? 

Wang and Franz (2015) VZJ in press 

Point scale soil moisture observations from SCAN 
mesonet shows MRD controlled by soil texture/hydraulic 
properties instead of climatology as previously thought. 
    

Why?   



Scaling Problem, Fractals 

https://uwana.wordpress.com/2012/07/ 

Canopy and Root Architecture  River Basins/Channel Networks  

http://en.wikipedia.org/wiki/Wiener_process 

Soil Properties 

Image from Franz et al.  (2011) 

Brownian Motion 
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Koija Group Ranch, Kenya, Feb. 2007 
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Space-time Mapping of Soil Moisture 
Deployed 3 stationary CRS sensors recording hourly soil moisture in irrigated maize, soybean 
and rainfed maize/soybean near Waco, NE. 
 
Used roving CRS to make daily soil moisture maps every week over a 12x12 km grid with 1.6 km 
spacing between May and September 2014. 
 
Goal to make continuous soil moisture estimates at individual quarter section 
level (~0.8 km) using statistical methods 

Roving Sensor Study Area and Layout of Sensors Stationary Sensor 

12 km 
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Roving CRS Results 
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CRS and Rover Validation 
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Statistical Properties 
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Correlation Between Probes 

RMSE = 0.0122 cm3/cm3  
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Correlation Between Probes 

4 km Split 12 km domain into 9 4x4 km subdomains 
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Correlation Between Probes 

4 km 
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Correlation Between Probes 

4 km 
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Correlation Between Probes 

0.8 km 

Split 12 km domain into 144 quarter section subdomains 
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 Combined fixed and mobile cosmic-ray probes to provide a 
realtime SWC monitoring network at ~1 km resolutions over 
a 144 km2 domain with 3 stationary CRS and 20 CRS rover 
surveys with RMSE< ~3%  
 

 Rover mapping can provide invaluable information to 
remote sensing 
 i.e. comparison of mean, relationship between mean and 

variance, spatial and temporal covariance matrices for 
downscaling  

 
 Is the network cost effective? Are there better ways to 

design the network? 

CRP Network Design 
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Previous work on network design 
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Previous work on network design 

Soil moisture Effective infiltration 
from rainfall 

Losses 
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The Way Forward? 
Precision Agriculture 
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data 
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 Map field with CREMISS for texture and 
soil moisture spatial patterns 

 
 Map field 4-6 more times with CR rover 

to form spatial calibration functions 
 
 Incorporate exponential filters for depth 

estimates down to 3 ft.  
 
 Provide realtime SWC statistical 

estimates by pivot section and 1 ft. depth 
increments by combining point sensor 
information with CREMISS mapping, 
spatial regression, and exponential filters 
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 Map areas with rover around longterm stations (SCAN, ADWN, OK. 
Mesonet, etc.), 10-15 times? 
 

 Investigate spatial calibration functions between rover and longterm 
station values (0-30 cm avg.) 

 
 Incorporate texture, elevation, vegetation characteristics, in 

geostatistical/data mining analyses 
 
 Use statistical models to provide realtime spatial estimates of 

landscape scale soil moisture patterns 
 

 Historical reconstruction of soil moisture fields for LSM initial 
conditions, LSM validation, and/or remote sensing analyses?  
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Questions? 

See posters by Will and Catie tomorrow on CRS vegetation and soil 
calibration using remote sensing and global databases.  
 
This work is supported by: 
 NSF EPSCoR FIRST Award 
 Cold Regions Research and Engineering Lab through the CESU 
 USGS104b 
 Layman Award 
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