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Soil conditions Sensor:
* Moisture
" Temperature
* Salinity
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Taking Soil To The Cloud — Architect
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e On-board sensing capabilities e Inter-connection of heterogeneous
(soil moisture, temperature, salinity,) machinery and sensors
e Communication through soil e Complete autonomy on the field

¢ Real-time information about soil and
crop conditions

A. Salam and M.C. Vuran, “Pulses in the Soil: Impulse Response Analysis of Wireless Underground Channel,” in Proc. IEEE INFOCOM ‘16, San
Francisco, CA, Apr. 2016

I. F. Akyildiz and E. P. Stuntebeck, “Wireless underground sensor networks: Research challenges,” Ad Hoc Networks Journal (Elsevier), vol. 4, pp. 669—-686,
July 2006.




Center Pivot Integration
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J. Tooker, X. Dong, M. C. Vuran, and S. Irmak, “Connecting Soil to the Cloud: A Wireless Underground Sensor Network Testbed,” demo presentation in
IEEE SECON '12, Seoul, Korea, June, 2012.




Wireless Underground Channel
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[3] X. Dong and M. C. Vuran, “A Channel Model for Wireless Underground Sensor Networks Using Lateral Waves,” in Proc. IEEE Globecom '11, Houston,
TX, Dec. 2011.

[4] X. Dong, M. C. Vuran, and S. Irmak, “Autonomous Precision Agriculture Through Integration of Wireless Underground Sensor Networks with Center
Pivot Irrigation Systems,” accepted for publication in Ad Hoc Networks (Elsevier), 2013.




Underground Channel Modeling 7

e WUSN models based on the analysis of the EM field and Friis
equations [5][6][7]

e Magnetic Induction (MI) based WUSNs [8][9]

e Lack of insight into channel statistics (RMS delay, coherence
BW)

e No existing model captures effects of soil type and moisture on
UG channel impulse response

e |mportant to design tailored UG communication solutions

[5] M. C. Vuran and lan F. Akyildiz. “Channel model and analysis for wireless underground sensor networks in soil medium”. In: Physical Communication 3.4
(Dec. 2010), pp. 245-254.

[6] X. Dong and M. C. Vuran. “A Channel Model for Wireless Underground Sensor Networks Using Lateral Waves”. In: Proc. of IEEE Globecom '11. Houston,
TX, Dec. 2011.

[7]1 H. R. Bogena and et.al. “Potential of wireless sensor networks for measuring soil water content variability”. In: Vadose Zone Journal 9.4 (Nov. 2010), pp.
1002-1013.

[8] Z. Sun and I.F. Akyildiz. “Connectivity in Wireless Underground Sensor Networks”. In: Proc. of IEEE Communications Society Conference on Sensor Mesh
and Ad Hoc Communications and Networks (SECON '10). Boston, MA, 2010.

[9] A. Markham and Niki Trigoni. “Magneto-inductive Networked Rescue System (MINERS): Taking Sensor Networks Underground”. In: Proc. 11th ICPS. IPSN
'12. Beijing, China: ACM, 2012,




Soil As UG Communication Medium :

e Soil Texture and Bulk Density
e Soil Moisture Variations
e Distance and Depth

e Frequency




Soil Texture and Bulk Density :
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Soil Moisture Variations
e Complex permittivity

of soil
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Distance and Depth
Sensors in WUSN applications are buried in Topsoil layer [10]

AsoilProfile

[10] A. R. Silva and M. C. Vuran. “Development of a Testbed for Wireless Underground Sensor Networks”. In: EURASIP Journal on Wireless
Communications and Networking 2010 (2010).
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Frequency Variations

e Frequency dependent path loss [11]
e Wave number in soil

e Channel capacity

[11] X.. Dong and M. C. Vuran. “Impacts of soil moisture on cognitive radio underground networks”. In: Proc. IEEE BlackSeaCom. Batumi, Georgia, July 2013.




EM Waves in Soil -
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[12] X. Dong and M. C. Vuran. “A Channel Model for Wireless Underground Sensor Networks Using Lateral Waves”. In: Proc. of IEEE Globecom "11. N
Houston, TX, Dec. 2011.
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Impulse Response Model of UG Channel
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where

@ L, D, and R are number of multipaths

@ «y, g, and «, are complex channel gains
@ T, T4, and T, are delays associated with lateral, direct, and reflected

waves, respectively

A. Salam and M.C. Vuran, “Pulses in the Soil: Impulse Response Analysis of Wireless Underground Channel,” in Proc. IEEE INFOCOM ‘16, San N

Francisco, CA, Apr. 2016




16

Impulse Response Model of UG Channel

Arrival time of each of the three components

AIR Lateral Wave . Td — (55/5) (1)
SOIL

V\\ = 2% (6:/5) 2)

Direct Wave oo Tf — 2 % (55/5) _I_ (53/{:} (3)

@ 0, is distance travelled by wave in soil

@ S is speed of wave in soil

A. Salam and M.C. Vuran, “Pulses in the Soil: Impulse Response Analysis of Wireless Underground Channel,” in Proc. IEEE INFOCOM ‘16, San N

Francisco, CA, Apr. 2016
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The Indoor Testbed

. R

e \Wooden Box Soil Placement, Packing
e Dimensions: Dralnage and Saturation

100" X36" X 48" Plpes
e 90 Cubic Feet of Soil




Antenna monitor
Placement e Overhead drying lights N




Soil Moisture in Indoor Testbed (Silt Loam) 20
« Matric forces (adsorption and capillarity)
e Soil Matric Potential
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Antenna Layout

Indoor Testbed




Outdoor Testbed -




VNA (Vector Network Analyser ) Measurements
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Model Valldation Three Soils b
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Coherence BW of the UG Channel
418 kHz as communication distance increases to 12m
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Impact of Soil Moisture Variations

e Bound water and Free

water
e \Water contained in the Silt L
first few particle layers 1
of the soil 73]
e Strongly held by soil & -80
. =
particles S
S 90!
e Reduced effects of E
osmotic and matric Rl
forces [14] 1001
-105

20 30 |40 50
H Igh SMDelay (ns)

[13] H. D. Foth. Fundamentals of Soil Science. 8th ed. John Wiley and Sons, 1990.
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Impact of Soil Moisture Variations
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Attenuation With Frequency

Silty Clay Loam e Higher frequencies
100 suffer more
attenuation

e Customized
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[14]. Dong and M. C. Vuran. “Impacts of soil moisture on cognitive radio underground networks”. In: Proc. IEEE N
BlackSeaCom. Batumi, Georgia, July 2013.




Conclusion

Soil Type

Silty Clay
Loam

Silt Loam

Sandy Soll

Mean Excess Delay

Distance
50cm 1m
mu Sig mu Sig
347 244 38.05 0.74
34.66 1.07 37.12 1.00
34.13 1.90 37.87 27.89

RMS Delay Spread

Distance
50 cm Im
mu Sig mu Sig
25.67 3.49 26.89 2.98
2493 1.64 25.10 1.77
27.89 2.76 2954 1.66
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Path Loss
Distance
50cm 1m

49dB 52
dB
48dB 51
dB
40dB 44
dB

N[
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[—1 D—1 R—1
hug(t) = Z ao(t — 1) + Z ago(t — 1) + Z aro(t — 1)
/=0 d=0 r=0
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Questions
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