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 EM radiation in various wavelengths 

is correlated to soil moisture.  

Optical [0.4-2.5 μm] 

Thermal [3.5-14 μm] 

Microwave [0.5-100 cm] 
 High penetration depth. 
⨯  Low spatial resolution. 

 High spatial resolution. 
⨯  Low penetration depth. 

Downscale 
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Thermal-Optical Trapezoid Model (TOTRAM) 
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 Linear LST-θ relationship: 

 Linear dry and wet edges: 
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 TOTRAM: 
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Two main limitations of TOTRAM: 

1) TOTRAM cannot be used for satellites with no thermal band 

(e.g. Sentinel-2). 

 

2) Beside soil moisture, LST depends on ambient environmental 

factors (e.g. air temperature, wind speed). TOTRAM needs to be 

parameterized for each individual image. 
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Can we resolve both limitations by proposing an “Optical” 
Trapezoid model? 

Core idea? 
Reflectance-soil moisture relationship is not significantly affected 

by environmental factors. 

 

So, a universal parameterization is feasible. 
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OPTRAM is based on a linear 
physically-based model: 
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=where: 

RSWIR: Reflectance at SWIR 
STR: Transformed reflectance at SWIR 

Sadeghi et al. 2015. A linear physically-
based model for remote sensing of soil 
moisture using short wave infrared bands. 
Remote Sensing of Environment. 164:66-76. 

Optical Trapezoid Model 
(OPTRAM) 
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Optical Trapezoid Model (OPTRAM) 

 Linear STR-θ relationship at a 
given NDVI: 

 Linear dry and wet edges: 
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 OPTRAM: 
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New Model Traditional Model 
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Study Area 

1 SCAN site; 15 rain-gauge stations  17 USDA-ARS micro-net stations  

Arizona Oklahoma 
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Landsat-8 
NASA (11 February 2013) 
9 Optical and 2 thermal bands 
Spatial resolution: 30-100 m 
Temporal resolution: 16 days 

Satellite Imagery 

Sentinel-2 
ESA (23 June 2015) 
13 optical bands 
Spatial resolution: 10 to 60 m 
Temporal resolution: ~10 days 

12 images in WG 
5 images in LW 
2015-2016 

17 images in WG 
4 images in LW 
2015-2016 
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Model Parameterization 

 Feasibility of universal parameterization 
was tested incorporating all images. 
 

 Two scenarios were considered: 
 

1) Local calibration: 
Edges were determined visually. 
W was calibrated with θ data. 
 
2) No local calibration: 
Edges were determined by fitting. 
W was converted to θ using measured min 
and max θ. d

w d
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TOTRAM: 

OPTRAM: 

Normalized soil moisture: 



12 

 A nearly trapezoidal shape is formed: 
LST is sensitive to θ in a broad range of fractional vegetation covers. 

Traditional Trapezoid 

 Integrated trapezoid consists of several separate smaller trapezoids: 
LST depends on ambient environmental factors besides soil moisture.  



13 NDVI NDVI 

 A nearly trapezoidal shape is 
formed: 

STR is sensitive to θ even in densely 
vegetated soils. 
 
 Trapezoids are visually similar: 
Universal calibration is feasible. 

New Trapezoid 
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Overall Accuracy 
(with local calibration) 

 TOTRAM and OPTRAM showed similar 
accuracy.  
 

 Both models, when calibrated, yield 
reasonable estimates (error < 4%)  
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Overall Accuracy 
(No local calibration) 

Without local calibration, both 
models still yield reasonable 
estimates (error ~ 4-5%)  
 

 Scattering is due to approximations: 
1) Linear LST-θ relationship at a given NDVI. 
2) Linear STR-θ relationship at a given NDVI. 
3) Linear LST-NDVI relationship at a given θ. 
4) Linear STR-NDVI relationship at a given θ. 
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Soil Moisture Maps 

 TOTRAM yielded W in a narrow 
range. 
 

 OPTRAM maps better match the 
DEM. They show river network. 
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 TOTRAM failed in predicting spatial 
variability of soil moisture: 

Universal parameterization is not 
feasible. 

 
 OPTRAM successfully captured 

spatial variability of soil moisture: 
Universal parameterization is feasible. 
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Conclusions: 

 OPTRAM resolves two limitations of TOTRAM. 

 OPTRAM and TOTRAM overall accuracy is comparable. 

Future Work: 

More extensive evaluations. 

 Improving model accuracy and parameterization. 



19 

Reference: 

Sadeghi, M., E. Babaeian, M. Tuller, S. B. Jones. 2017. The Optical Trapezoid Model: 

A Novel Approach to Remote Sensing of Soil Moisture Applied to Sentinel-2 and 

Landsat-8 Observations. Remote Sensing of Environment, Accepted. 

Acknowledgement: 

Funding from National Science Foundation awarded to USU and UofA. 


	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19

