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SMAP Marena Oklahoma In Situ Sensor Testbed
Site Design




USDA SMAP Marena Oklahoma In Situ Sensor Testbed
S Marena Site Design

e Four Base Installations

e Common depths of 5, 10, 20, 50, 100
cm, with some sampling at 2.5 cm with

Hyd ra. Site A Site B Site C Site D
- Base station sensors pase pase pase pase
GPS ASSH- GPS GPS
o  Stevens Water Hydra Probes (6) Imko/Trime
o  Delta-T Theta Probes (5) COSMOS Passive DTS CRN
_ ASSH-
o Decagon EC-TM probes (5) o
o Sentek EnviroSMART Capacitance
TDR systems
Probes (4)
Flux System
o  Campbell CS615/CS616 TDRs (5)

o CS 229-L heat dissipation sensors (OK
Mesonet) (5)

o AcclimaTDT (5)

In 2016
o Acclima 315(4)
o GS-1(4)

o AcclimaTDT (4)
o CS655 (4)



USDA SMAP Marena Oklahoma In Situ Sensor Testbed
s Installation

 [nstallation in May 2010




USDA H:sl_ SMAP Marena Oklahoma In Situ Sensor Testbed
— Ces — New Sensors/Networks

COSMOS - COsmic ray Soil Moisture Observing
System uses a neutron counting system to measure
broken down water molecules as a proxy for moisture
at the surface and root zone (~30 cm).

GPS Reflectometry - Using full GPS stations which
measure tectonic movement and taking the reflections .
at the horizon to estimate soil moisture in the
foreground. |

Passive Distributed Temperature Sensor Systems
(PDTS) — Long buried cabling at various depths can
estimate on a high spatial scale, the moisture content
Immediately surrounding the wire.




In Si Ti
USDA aE H:ﬁ_ SMAP Marena Oklahoma In Situ Sensor Testbed

. Sensor Methods
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USDA |.§L SMAP Marena Oklahoma In Situ Sensor Testbed
=Yor — Calibration and Scaling

Soil Calibration

Every sensor can be calibrated to each specific soil to be installed in.

- Soll specific Calibration, in field or in lab with replication of soil bulk density
- Variety of soil moisture conditions necessary for accurate calibration.

0 G- 10 15 20 25 30 35 a0 a5 s0
Distance aleng transect in meters

Installation Scaling

Each installation should be scaled to determine how it represents the domain in

which it is installed.

- Each installation or set of installations is one data series to be calibrated

- Scaling is against the satellite metric, 0-5 cm gravimetrically based volumetric
soil moisture.



USDA SMAP Marena Oklahoma In Situ Sensor Testbed
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Eea Sensor Calibration
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USDA SMAP Marena Oklahoma In Situ Sensor Testbed

= Sensor Calibration
Factory — Biasw/ — pyrep RMSE soil .
Listed factory o Failure Rate
Sensor Accuracy  calibratio factory specific over 3 years
calibration calibration
Theta 0.01 0.014 0.030 0.028 0 out of 20
Hydra 0.01-0.03 0.020 0.040 0.032 0 out of 24
ECTM 0.03 0.076 0.081 0.036 8 out of 20
CS-616 0.025 -0.023 0.073 0.063 1 out of 20
Trime 0.01-0.03 0.005 0.042 0.023 0 out of 6
Acclima 0.01 0.074 0.080 0.025 9 out of 20
CS-229 N/A - - - 2 out of 20*
Enviro- N/A - - - 4 out 15**
SMART




USDA SMAP Marena Oklahoma In Situ Sensor Testbed
=i Validation Sampling Campaigns

e Monthly Sampling
o Vegetation Collection
o Gravimetric Sampling
o Theta Probe Sampling

* Intensive Observations =
o High Density Sampling i : ‘__.*‘ﬁﬁ;mq%
o Soil Profiles X
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USDA SMAP Marena Oklahoma In Situ Sensor Testbed

i Sensor to Sensor Average Comparison
UnScaled Scaled |

Sensor 25cm 5cm 10cm Vglgsgie 25cm 5cm 10cm VSSSEF
CS-616 0.110 0.140 0.036 0.046

Hydra 0.048 0.062 0.079 0.021 0.035 0.047

Theta 0.058 0.063 0.030 0.039

Acclima 0.027  0.053 0.030 0.047

Sentek 0.178 0.064

ECTM 0.047  0.055 0.032 0.043

Trime 0.083 0.085 0.110 0.026 0.032 0.042

CS229 0.089 0.091 0.038 0.044

GPSR 0.050 0.036
COSMOS 0.048 0.035




USDA

SMAP Marena Oklahoma In Situ Sensor Testbed
Uniform conditions in the testbed

RMSE of Calibrated Sensor Average, m3/m3
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SMAP Marena Oklahoma In Situ Sensor Testbed
Sites A-D Hydras at 5 cm depth

Volumetric Soil Moisture in m3/m3
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USDA SMAP Marena Oklahoma In Situ Sensor Testbed
<3 CDFs of Site Averages by Sensor at 5 cm
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USDA SMAP Marena Oklahoma In Situ Sensor Testbed
——

<008 CDFs of Site Averages by Sensor at 50 cm
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USDA SMAP Marena Oklahoma In Situ Sensor Testbed
E:""-—_ -
. Sensor to Sensor Average Comparison

Hydra vs. Theta
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USDA SMAP Marena Oklahoma In Situ Sensor Testbed
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. Sensor to Sensor Average Comparison

C5616 vs. Hydra
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USDA SMAP Marena Oklahoma In Situ Sensor Testbed
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. Sensor to Sensor Average Comparison

Theta vs. Acclima
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USDA SMAP Marena Oklahoma In Situ Sensor Testbed
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. Sensor to Sensor Average Comparison

Echo/ECTM vs. Trime Pico
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USDA SMAP Marena Oklahoma In Situ Sensor Testbed
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. Sensor to Sensor Average Comparison

Hydra vs. Sentek at 10 cm
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USDA SMAP Marena Oklahoma In Situ Sensor Testbed
s Z Acclima versus Acclima
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USDA SMAP Marena Oklahoma In Situ Sensor Testbed
el Hydra versus GS1
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USDA SMAP Marena Oklahoma In Situ Sensor Testbed
sl Hydra versus Acclima 315
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Not all measurements are created equal
(Some are more equal than others)

I"E

PGW 2530 g

‘Max 250g d= 0.001g

All sensors are “wrong...”
However, consistency matters a
great deal.




The one-slide lecture on triple-collocation

1. Consider three ‘independent’
soil moisture estimates (61' 92' 93)

2. Subtract their means, ensuring
the same numerical scale

61,S — 61,5 _ 61,5 : 62,5 — 92,5 T 62,S : 63,5 — 63,5 T 63,5

3. Cz_allculate random error assoclated ¢ — TC(Q].,S ,05,0;3
with the triad of measurements

(A paper discussing USCRN triple-collocation
estimates is currently under review in VSJ)




Comparing Sensors:
What Is the random error associated with each technology?

Average TC Error, 1. Atthe 5cm depth, Theta
Single Sensor, 3 Profiles probes produce the largest
. random errors (~0.030 m3/m?3)
0.0450 2. At the 5¢cm depth, Echo
0.0400 probes produce the smallest
0.0350 — random errors (~0.008 m3/m?3)
0.0300 [
0.0250 — = H=em 3. Atthe 10cm depth, Sentek
0.0200 [ |- W @ioem | probes display the largest
0.0150 H random errors (0.034 m3/m?3)
0.0100 [ ]
o.oos0 I r I I ‘h 4. At the 1ocm depth, EChO
probes (again) display the
%616 Hydra Theta Acclima Sentelk Echo  Trime 5229 smallest random errors (0012
m3/m3)

(Trime sensors are only available in two locations,
Sentek readings are unavailable for the 5cm depth)



Comparing Remotely-Sensed Estimates and Models:
How do the errors grow as the type of product changes?
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Remote Sensing vs. In Situ vs. Model

COSMOS, In Situ (5cm),
CRN_model (5cm)

COSMOS, In Situ {10cm),
CRN_model (5cm)

B In Situ (5cm), CRN_model {5cm),
CRN_model (5¢m)

® In Situ(10cm), CRN_maodel (5¢cm),
CRN_model (5¢m)

B COSMOS, In Situ (5¢m), In Situ
(5cm)

B COSMOS, In Situ {10cm), In Situ
(10cm)

(COSMOS readings are available the MOISST test bed,
CRN model estimates were calibrated using each of the
paired USCRN soil moisture and precipitation gauges)

Analysis of combinations of
three soil moisture products.
at a single location:

in situ, remotely-sensed
(COSMOS), and model.

1. The CRN model
introduces smaller errors
against 5cm in situ sensors

2. Largest errors are
obtained when model
products are compared with
In situ sensors.

3. COSMOS and in situ triads
produce comparable errors to
three in situ sensors. (Even
though COSMOS’s effective
depth is larger)
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Comparing Mixed
Networks:

Analysis of combinations of three
sensor types at a single location
that include or exclude a specific
technology.

1. At the 5¢cm depth, inclusion of
Echo probes produces significantly
larger errors. (And excluding
Echo probes helps)

2. At the 10cm depth, Sentek
Echo, and CS229 sensors produce
much larger random errors when
included.

3. Networks including Hydra,
Theta, and Trime probes
outperform those without



N =

Conclusions: What do we know?
(or what do we think we know?)

Calibration is important, scaling is more important
Not all probes are equal.

» wh e

Though Echo probes are extremely consistent (small random errors), their presence increases
errors in mixed networks.

Sentek sensors produce the largest errors in homogeneous and heterogeneous networks.
Integrating COSMOS sensors with in situ technologies presents comparable errors to all-in-
situ networks.

Hydra, Theta, and Trime sensors offer the greatest benefit to mixed networks.
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