THE UNIVERSITY OF TEXAS AT AUSTIN JACKSON SCHOOL OF GEOSCIENCES

Soil Moisture, Drought and Water Resources in Texas

Todd Caldwell

Michael Young and Bridget Scanlon

MOISST: Advancing Soil Moisture Science and Application

4-5 June 2014, Stillwater, OK

Soil Moisture and the Drought in Texas

- I. How is drought linked to water resources?
- **II**. Where does soil moisture fit into the picture?
- **III**. At what scale is soil moisture operational?
- IV. How are can we validate these products?
- v. How can stakeholders use soil moisture?

We cannot have drought without socio-economic impact. Otherwise, it's just desert

2011: ~\$8 billion in losses from the agricultural sector

Droughts are defined differently by impact

- Meteorological drought
 - Significant negative departure from normal precipitation
 - Shortage of precipitation (or moisture supply) over some period of time (weekly, monthly, seasonal, or annual time scales).
- Agricultural drought
 - Period of moisture deficiency that is sufficient to have a lasting and adverse impact on plant growth or crop yield
- Hydrologic drought
 - Prolonged precipitation deficiencies on water supply from surface or subsurface sources
- There is an inherent time-lag between meteorological, agricultural and hydrological drought

Obvious impacts to our surface water reservoirs

http://waterdatafortexas.org

Obvious impacts to our surface water reservoirs

Colorado River Basin Reservoirs

Monitored Water Supply Reservoirs are 29.2% full on 2014-06-03

PROBLEM: The perplexity of drought beyond 2012

"Soil moisture is of modest value to everyone but critical value to none"

- State (withheld) Climatologist

How much precipitation do we need to get out of drought? Despite near-normal rainfall, why are reservoir levels NOT recovering? How much water can we release for ag?

- How much water do we have?

How can we account for all the water in Texas?

$$\sum IN - \sum OUT = \Delta STORAGE$$

- WATER_{TN} WATER_{OUT} = \triangle STORAGE
- Precipitation* Consumption* Reservoirs*
- Snowpack
 ET*
- Groundwater
 Groundwater*

- - Groundwater*
- Streamflow
 Streamflow*
 Soil Moisture*

Storage components

$PPT - (Q + C + ET) = \Delta R + \Delta GW + \Delta \theta$

How about those storage terms?

- Reservoir Storage (ΔR): observable
- Groundwater storage (ΔGW): somewhat observable
- Soil moisture storage ($\Delta \theta$): ???

We have uncertainty in our inputs (PPT) Unknowns in our outputs: crop consumption & ET Unknowns in our storage: <u>soil moisture</u>

Using GRACE to estimate total water storage

Majority of depletion appears to be in soil moisture storage

 $\Delta Total Water Storage = \Delta Reservoir + \\\Delta Soil Moisture + \Delta Groundwater$

 $\Delta TWS = \Delta R + \Delta SMS + \Delta GW$ 50 maf = 6 maf + 70-80 % TWS + 4-8 maf

Source: Long et al., 2013

Changes in Total Water Storage: GRACE 1º Grid

THE UNIVERSITY OF TEXAS AT AUSTIN

Bureau of Economic

Geology

Texas Drought: Soil moisture deficit in Texas

Soil moisture from multiple LSM indicate that depletion in 2011 could range from 20% to 100% of TWS from GRACE – <u>the soil reservoir is *BIG*</u>

Uncertainty in soil moisture storage between models is high

NLDAS-2: Noah output and forcings

Primary Forcing Data at Hourly Time Steps (NARR)	
Precipitation (PRISM)	Solar Rad
Convective Available PE	PET
Air T and RH (2m)	Wind Speed (10m)

Noah Output

- GRIB outputs at hourly and monthly values (1/8°)
- 52 fields of parameters
- Soil Moisture Storage (4):
 - 0-0.1 m 0.1-0.4 m
 0.4-1.0 m 1.0-2.0 m

http://disc.sci.gsfc.nasa.gov/hyd rology/data-holdings

Changes in Total Water Storage: Statewide

Cross-correlation from 2003-2013

Geology

What have we done to communicate our results?

- We have shown that soil moisture storage is a huge 'reservoir' in Texas
- We have shown the <u>merit</u> of both remote sensing products and land surface models
- We have shown the associated <u>error</u> in remote sensing and uncertainty in LSM
- We have explained soil moisture to Stakeholders
- Now, we can increase monitoring networks:
 - Texas Soil Observation Network (TxSON)
 - Texas PET Network (TWDB)

What is soil moisture storage?

inch H₂D

per ft. soil depth depth

Texas Soil Observation Network: TxSON

SMAP EASE-2 Grid: Middle Colorado Basin, TX

Ideal Core Cal/Val Site:

- 36 km footprint (yellow)
 - 7 stations (existing LCRA)
- 9 km footprint
 - 2 cells each with 7 stations

• <u>3 km footprint</u>

- 3 cells each with 7 stations
- Nested design: 37 total stations
- Sensors at 5, 10, 20 and 50 cm
- Minimal variability in:
 - Vegetation
 - Topography
 - Soils/geology
 - Non-urban

-95

- Stakeholder interests
- Educational outreach

Core Cal/Val: Mean relative difference (SWS)

MRD using NLDAS for each HUC 8

- Cool = wet (+ 25%)
- Hot = drier (- 25%)
- Neutral = within HUC8 mean and temporally stable

Core Cal/Val: Fredericksburg, TX

OF 4IC Y

Noah SWS: Pedernales River Basin

- HUC8 12090106
- Gray = all nodes within HUC
- Blue = MRD ~ 0 THE UNIVERSITY OF TEXAS AT AUSTIN

Soil water storage: Temporal Stability (Noah)

- Ideal cell: MRD = 0 (black symbols) and low RMSE (blue line)
- HUC8 12090106: five populations; two cells just below zero
- Or, long story short,
 - Active stakeholders: LCRA and HCUWCD
 - Lots of interested 'donors'
 - Hill Country Science Mill
 - Plenty of soil
 - 13 wineries & 3 breweries

<u>redericksburg 36 kn</u>

Bureau of Economic Geology

Summary (http://www.beg.utexas.edu/soilmoisture/)

Soil Moisture & Water Resources

- Soil moisture (model) and TWS (RS) both x-corr to reservoir storage
- Partitioning TWS is tricky
 - LSM show wide variability
 - Residual is compounded errors, groundwater, moho
- We need in situ data
 - We need to communicate the importance of soil water storage!

Texas Soil Observation Network (TxSON)

- Operational by August
- Land leases for 2, 9km grids
- Sensors under calibration paid by JSG donors
- Lots of work to do to meet
 SMAP rehearsal and launch!
- Working on LSM at 0.25km² to finalize locations
- Field campaigns planned for early Fall-Spring.

http://www.beg.utexas.edu/soilmoisture/

