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Transformations between volume-averaged pore fluid concentrations and flux-averaged concentrations 
are presented which show that both modes of concentration obey convective-dispersive transport equa- 
tions of identical mathematical form for nonreactive solutes. The pertinent boundary conditions for the 
two modes, however, do not transform identically. Solutions of the convection-dispersion equation for a 
semi-infinite system during steady flow subject to a first-type inlet boundary condition is shown to yield 
flux concentrations, while solutions subject to a third-type boundary condition yield volume-averaged 
concentrations. These solutions may be applied with reasonable impunity to finite as well as semi-infinite 
media if back mixing at the exit is precluded. Implications of the distinction between resident and flux 
concentrations to laboratory and field studies of solute transport are discussed. It is suggested that 
perceived limitations of the convection-dispersion model for media with large variations in pore water 
velocities may in certain cases be attributable to a failure to distinguish between volume-averaged and 
flux-averaged concentrations. 

INTRODUCTION 

The convective-dispersive transport equation is the founda- 
tion upon which numerous mathematical analyses of solute 
transport in porous media have been based. Recently, 
questions have been raised regarding the applicability of this 
model to media exhibiting large variations in pore water ve- 
locities caused by the presence of continuous large pores or by 
field-scale variability in hydraulic properties [van Genuchten 
and Wierenga, 1976]. Under certain limiting conditions (i.e., 
for low apparent dispersivities), all solutions of the classical 
convection-dispersion model yield symmetrical concentration 
distributions in time and space. Experiments on fractured or 
aggregated media, however, yield asymmetrical spatial and 
temporal concentration distributions with first moments 
markedly different from those anticipated for symmetric distri- 
butions [e.g., Bouma and W6sten, 1979]. For such media, 
rapid breakthrough is observed in laboratory column tracer 
experiments. It is intuitively apparent that a large portion of 
the pore space is being more or less bypassed, resulting in a 
discrepancy between the effluent concentration and the 
volume-averaged resident pore fluid concentration in the 
vicinity of the exit boundary. Such a discrepancy is often re- 
garded as incongruous with the classical convection- 
dispersion equation, a view seemingly corroborated by the 
inability of certain solutions of this equation to fit observed. 
breakthrough curves [e.g., Nkedi-Kizza et al., 1983]. 

Distinctions between flux-averaged effluent and volume- 
averaged resident concentrations have been made by workers 
in petroleum and chemical engineering [Brigham, 1974; Kreft 
and Zuber, 1978, 1979]. We will show that it is of fundamental 
importance to make such a distinction in order to stipulate 
boundary conditions appropriate for specific experimental 
solute detection modes. When the assumptions implicitly in- 
voked by various boundary conditions are given proper con- 
sideration and when mass balance constraints are carefully 
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adhered to, we will find that certain perceived limitations of 
the convection-dispersion model appear to be mitigated. 

THEORY 

The usual continuum approach to solute transport in 
porous media invokes the use of concentrations which repre- 
sent average quantities of solute occurring in the pore fluid 
within a finite representative elementary volume of the porous 
medium [Bear, 1972]. Associating this mean value with its 
centroid results in the requisite function which is continuously 
differentiable in space. Consideration of a mass balance for 
nonreactive solutes in one dimension yields the continuity 
condition 

O(C•O)/Ot -- -OJ/bx (1) 
where Cr is the volume-averaged concentration (or resident 
concentration in the terminology of Kreft and Zuber [1978]) 
which we specifically distinguish from the flux-averaged con- 
centration C•,, to be discussed shortly, 0 is the volumetric 
water content, t is time, and J is the solute flux density. The 
constitutive relationship describing J is 

J = qC,- DO OC,/Ox (2) 

where q is the liquid flux density and D is the dispersion 
coefficient representing the combined effects of diffusion and 
hydrodynamic dispersion on transport. Combination of (1) 
and (2) and restriction of our attention to the case of constant 
q, 0, and D for macroscopically one-dimensional transport 
yields the linear convection-dispersion equation 

c•C,_ D •2Cr •Cr at •- v ax (3) 
where v = q/O is the mean pore water velocity. 

Boundary Conditions for Volume-Averaged Equations 

Considerable attention has been given to the solution of (3) 
for various initial and boundary conditions. For a semi- 
infinite system, an appropriate lower boundary condition is 

aC/ax (•, t) = o (4) 
866 
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If, on intuitive grounds, we assume that concentrations are 
continuous across the inlet boundary, and if the input solution 
is well mixed, a first-type boundary condition results which, 
for pulse-type injection, would specify 

C,(0, t) = Co 0 < t < to 

CA0, t)= 0 t > to 
(5) 

Although intuitively appealing, we will show that this first- 
type boundary condition for C• defined by (5) is improperly 
posed. When the input solution is not well mixed, a boundary 
layer may develop in the region external to the porous 
medium, rendering (5) inappropriate. However, a more general 
argument against the applicability of the first-type boundary 
condition may be posed by consideration of the physical re- 
ality underlying the representation of boundaries in math- 
ematical continua. It is apparent that the plane which we 
regard as the macroscopic boundary has no physical relevance 
at the microscopic level as irregularities in pore structure and 
morphology become manifest. If the representative elementary 
volume (REV) of the porous medium has a diameter l, then 
because properties in a continuum are associated with the 
centroid of the averaging volume, medium properties must 
vary continuously from those of the external medium to those 
of the bulk porous medium over a finite transition zone of 
thickness 1/2 [Bear and Bachmat, 1982]. Integration of (3) over 
this finite transition zone from x = 0 to x = 1/2 for t < to leads 
to 

c•C•(0, t) c•C•(l/2, t) 
qCo - DoO(O) c•x = qC•(l/2, t)- DO(l/2) c•x 

/2 OCr(X, t)O(x) dx (6) + c•t 

where D O is the bulk solution molecular diffusion coefficient, D 
is the bulk porous medium dispersion coefficient, and O(x) is 
the volumetric water content at x with 0(0)= 1 and 0(1/2) the 
bulk porous medium value. For a well-mixed input solution, 
3C,(0, t)/c•x = 0. Evaluation of the integral in (6) requires a 
knowledge of C, and hence D in the boundary region 
0 < x < 1/2. The case of an assumed linear variation in D 
within a boundary region was discussed by Pearson [1959] 
who noted that the indeterminacy of this function makes it 
desirable to impose the limiting condition that l-• 0, causing 
the integral to vanish. Taking I as infinitesimal in (6) and 
proceeding in a similar fashion for t > to yields, directly, 

c, -- x-x/l=o V + 

C• -0 

0<t_<t o 

t>to 

(7) 

which is the third-type boundary condition for pulse injection 
specifying the solute flux at the inlet boundary. We will refer 
to the quantity D/v as the apparent medium dispersivity. The 
designation 0 + denotes quantities evaluated approaching 
x = 0 from positive x (interior to the porous medium). 

We may interpret the third-type boundary condition to 
imply the existence of a transition region within which 
medium dispersivity and concentration vary continuously. 
The transition region is treated macroscopically as being of 
infinitesimal thickness, resulting in apparent discontinuities in 
both quantities at the boundary. Actual concentrations at the 

pore scale will vary continuously over the finite transition 
region. The incongruity of a concentration discontinuity at the 
boundary which increases with the apparent dispersivity must 
be tempered by the realization that calculated values have no 
physical relevance within 1/2 of the boundary. To derive the 
first-type boundary condition for C• (equation (5)) from (6), an 
additional assumption to those involved for the third-type 
condition must be made, namely, that c•C•/c•x = 0 interior to 
the transition zone. Because this latter stipulation will not be 
met, we find that the cost of maintaining macroscopic conti- 
nuity of concentration for the first-type condition is a loss of 
mass flux continuity. Considering the indeterminant nature of 
the microscopic features of the boundary transition region, the 
least we can do is require that the basic condition of mass 
conservation be met by the boundary conditions. 

The solution to (3), subject to the initial conditions, 

C,(x, 0) = 0 (8) 

and the third-type upper boundary condition (7) for the semi- 
infinite case (4) has been given by Lindstrom et al. [1967] as 

C,(x, t)= CoA(x, t) 0 < t _< to 

C,(x, t) = CoA(x, t)- CoA(x, t- to) t>to 
(9a) 

where 

1 1 A(x, t)= « erfc L2(Dt)X/2j + L•-•j exp . 4Dr J 

-« 1 + • + -- exp (vx/D) erfc 12(Dt)X/2_ ] 
(9b) 

which is the appropriate expression for evaluating volume- 
averaged resident concentrations. 

It may be noted that a commonly employed solution for C• 
is obtained by truncating the last two terms from A(x, t), thus 
leaving only the first erfc term. This solution may be derived 
explicitly if the porous medium is assumed to extend to infini- 
ty in both directions from the injection plane. The resulting 
spatial distribution of C• as to • 0 yields a normal curve with 
a first moment occurring at x = vt. The symmetry of this dis- 
tribution is disturbed by inlet boundaries that preclude back 
dispersion and skew the solute distribution away from the 
boundary. 

Transformation to Flux-Averaged Equations 

In many cases, solute flux distributions rather than pore 
fluid concentrations may be of primary interest. It is then 
convenient to define the flux-averaged concentration C s such 
that 

or, with (2), 

qC s = J (10) 

D c3C, (11) Cs=C' v c•x 

which is valid for nonzero pore water velocities. Flux con- 
centrations may be interpreted physically as representing the 
mean of the microscopic fluid concentrations weighted by 
their respective microscopic fluid velocities. The discrepancy 
between Cf and C• increases with the apparent dispersivity 
[Kreft and Zuber, 1978]. In the special case of v = 0 with 
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Fig. 1. (a) Resident concentrations by (9) and (b) flux con- 
centrations by (18) as functions of dimensionless distance for a pulse 
of duration vt o = 0.5 m at a final time vt = 1.0 m for various apparent 
dispersivities D/v (values indicated on curves). 

mixing solely by diffusion, C s has no physical relevance and is 
mathematically undefined. 

To evaluate Cfix, t) for a semi-infinite medium, we may 
employ a transformation of (3), (4), (5), and (8). Putting (10) 
into (1) for constant (and nonzero) v yields 

OC, OC s 
= -v (12) c•t c•x 

Differentiating (11) with respect to time yields 

&Cs &Cr D &2Cr 
c•t c•t v c•x c•t 

(13) 

Use of (12) to eliminate C, from (13) gives 

•C s •2C s OC s 
c•t -D•-v Ox (14) 

which is mathematically identical to (3) but with C• replaced 
by C s. Both equations describe the same physical processes, 
and D and v represent precisely the same physical quantities in 

both equations. This duality of interpretation of the physical 
meaning of the concentrations in the convection-dispersion 
equation imposes a need to carefully stipulate boundary con- 
ditions in keeping with the desired meaning. The identical 
mathematical form of (3) and (14) must not be allowed to 
obscure the fundamental distinction between resident and flux 
concentrations. 

For the initial condition C• = 0 we have by differentiation 
that •C•/•x = 0, which leads to the transformed initial con- 
dition in terms of C s by direct substitution in (11): 

Cfix, 0) -- 0 (15) 

The lower boundary condition r3Cr/r3x = 0 transforms subject 
to the stipulation that higher order spatial derivatives of C• 
are also zero at x - oo, to yield 

r3Cf/r3x (oo, t)--0 (16) 

To evaluate the transformed upper boundary condition, we 
eliminate C• from (7) with (11), which gives, immediately, 

Cs(O, t) = Co 0 < t < to 

Cs(O, t)= 0 t > t o 
(17) 

The transformation from C, to C s results in a mathematically 
identical set of equations with the exception of the upper 
boundary condition which changes from a third-type con- 
dition for C• to a first-type for C s. The solution of (14)-(17)is 

C f(x, t)-- CoB(x, t) 0 < t _< to 

C f(x, t) - CoB(x, t)- CoB(x, t - to) t>to 
(18a) 

where 

[x-vt] x+ 
B(x, t) = « erfc L2(Dt)•/21 + « exp (vx/D) erfc 2(Dr)l/2 

(18b) 

Obviously, the problem posed by (14)-(17) may be solved 
mathematically, irrespective of the subscript on C. In fact, (18) 
is most commonly presented as a solution to the volume- 
averaged equations for the semi-infinite case subject to a first- 
type upper boundary condition in Cr (equation (5)) [Lapidus 
and Aroundson, 1952]. The form of (18) is then preserved, but 
the result is interpreted as representing C•(x, t) rather than 
Cfix, t). By conceding on physical grounds that a flux-type 
input boundary condition must be employed (i.e., the third 
type in C•), we see that the foregoing interpretation of (18) is 
incorrect. Application of this equation implies that a transfor- 
mation has been made from volume-averaged to flux-averaged 
concentrations. 

RESULTS AND DISCUSSION 

Spatial Concentration Distributions 

Figure 1 compares the spatial distributions of C• and C s in 
the x direction calculated from (9) and (18), respectively, using 
apparent dispersivities (D/v) that range from 0.01 to 100.0 m. 
Reduced concentrations C•/Co and Cs/C o are plotted against 
the dimensionless distance X = x/vt for a pulse of duration 
Vto = 0.5 m and a final time given by vt = 1.0 m. 

It is apparent that all curves for C s pass through the origin 
in accordance with the boundary condition Cfix, t)= 0 for 
t > to. This is not the case for the Cr curves, which exhibit an 
apparent discontinuity in concentration at the inlet boundary 
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TABLE 1. First Moments of Spatial Distributions (•) and Modal 
Distances X m as Ratios With the Piston Front Center of Gravity X* 

for Various Apparent Dispersivities D/v With vt o - 0.5 m and 
vt - 1.0 m 

<œ)/x* x•/x, 

D/v, m C r C s Cr C s 

0.01 1.01 1.03 0.98 0.97 
0.1 1.13 1.26 1.04 1.17 
1.0 1.88 2.51 1.29 2.13 

10.0 4.62 6.83 1.58 5.47 
100.0 13.44 20.61 1.78 16.19 

which increases in magnitude with the dispersivity as ex- 
pected. 

For the lowest dispersivity medium the Cr and C s curves 
are very similar (Figure 1). Mathematically, it is apparent from 
the definition of C s that as D/v--, O, Cs-• Cr. Physically, this 
reflects the fact that volume-averaged and flux-averaged con- 
centrations become identical when variations in microscopic 
pore water velocities tend to zero. As these velocity variations 
increase, dispersive transport dominates over macroscopically 
convective transpo,rt, and the spatial distributions of C• and 
C•c gradually diverge. Both distributions become markedly 
asymmetrical, exhibiting skewing away from the injection 
boundary. This skewing forces the modal and mean values of 
C• and C s to occur at greater distances from the injection 
boundary than would be •he case for purely convective trans- 
port. 

For piston flow (D- 0) the distributions of C• and C s 
reduce to a square wave with a reduced concentration of unity 
between X -0.5 and X = 1.0 (Figure 1). The first moment in 
space for piston flow accordingly occurs at X -0.75. We will 
designate this value of X, corresponding to the center of mass 
for piston flow, as X*. The first moments of the spatial distri- 
butions of C• and C s may be calculated as' 

<2> =[fo©2C,2, d2J[fo©C,2, d2] -• ,19, 
where C is Cr or C s and (•) is the dimensionless distance 
corresponding to the mean of the distribution function. For 
resident concentrations, (•> describes the center of mass of 
the solute distribution, while for C s the value represents the 
distance at Which the solute flux density attains its mean 
value. • 

Values of (•> were evaluated from (19) by numerical quad- 
rature for the cases presented in Figure 1. Results are given in 
Table 1 as (2>/X* values representing ratios of actual first 
moments of the spatial distributions to those for piston flow. 
Also given are reduced modal distances 2,,/X* corresponding 
to maxima in the C, and C s distributions. The first moments 
of C, increase markedly beyond the piston flow mean as ap- 
parent dispersivity increases, while modal distances advance 
more gradually, lagging well behind mean distances. Mean 
and modal distances for distributions of C s likewise increase 
with increasing dispersivity. Note that the modal values for C s 
increase much more with increasing dispersivity than the 
values for C,. Also, modal and mean values for C s occur at 
larger distances than those for •C, at a given dispersivity. 

It is often not appreciated that the convection-dispersion 
equation predicts centers of mass of concentration profiles in 
excess of those expected for piston flow. Analyses of solute 
transport are sometimes made by explicitly or implicitly de- 

coupling convection and dispersion mechanisms [Sidle and 
Kardos, 1979; Rose et al., 1982]. The center of mass is as- 
sumed to move at a velocity v with symmetric dispersion oc- 
curring about the mean. This decoupling is mathematically 
equivalent to imposing boundary conditions relevent to infi- 
nite media. For bounded media, this leads to errors which 
increase with apparent dispersivity as the last two terms in 
(9b) for Cr become increasingly significant. In media which 
exhibit large variabilities in pore water velocities, hy- 
drodynamic dispersion becomes increasingly more important 
relative to convective transport, and the implied solution trun- 
cation will lead to significant errors. 

To correct for observed discrepancies between measured 
centers of mass and piston flow values, bicontinuum models 
with "mobile" and "immobile" pore regions have been postu- 
lated [Skopp and Warrick, 1974; van Genuchten and Wierenga, 
1976; Sidle and Kardos, 1979; Rao et al., 1980]. By viewing the 
data in Table 1 in this manner, we •could conclude that for the 
D/v = 100 m medium the "mobile" pore fraction is approxi- 
mated by X*/(X> for C,, i.e., 1/13.44 = 0.074. This value may 
or may not have any physical significance, but if the medium 
is viewed as a simple (mono-) continuum, the information is 
immaterial. Microscopic features have no direct relevance to 
the macroscopic description except insofar as they affect the 
adequacy of the imposed macroscopic boundary conditions. If 
the scale of microscopic variations in the pore structure gov- 
erns the REV, which in turn governs the thickness of the 
boundary transition region, as has been suggested, then the 
region of valid!ty of a bulk continuu m approach will 'be af- 
fected. So long as the flow region of interest is large compared 
to the scale of the m!croscopic heterogeneities and hence to 
the size of the boundary transition region, a monocontinuum 
approach should be valid. In such circumstances, the exclusion 
of a portion of the fluid-filled pore space from the porous 
medium continuum is physically justifiable only if (1) part of 
the pore fluid is encapsulated by some form of impermeable or 
semipermeable membrane or (2) electrochemical forces ex- 
clude solute near solid surfaces (i.e., negative adsorption). 

Temporal Concentration Distributions 

In many field and laboratory situations it is either more 
desirable or convenient to monitor temporal concentration 
changes at fixed points in space downstream from a tracer 
injection location rather than to determine spatial distri- 
butions at fixed times. Confusion between volume- and flux- 

averaged concentrations in such situations may lead to gross 
misinterpretations of observations. Values of the reduced con- 
centrations of C•/Co and C s/Co are given in Figure 2 as func- 
tions of the dimensionless time T- vt/x at a fixed distance 
x - 0.1 m • for media subject to a dimensionless pulse duration 
Vto/X -0.5 and characterized by Various values of the dimen- 
sionless group D/vx. (Four the sake of parallism with the spatial 
distribution curves given for various D/v, we employ the di- 
mensionless group D/vx in lieu of its inverse, which represents 
a Peclet number.) As was observed for the spatial distribution 
functions, the temporal distributions of C• and C s become 
indistinguishable as the apparent dispersivity approaches zero 
(piston flow). As dispersivity incr. eases, peak values of both C• 
and C s shift t O shorter times. However, while the temporal 
distribution of resident concentrations becomes increasingly 
flat, values of C s pass through a minimum at intermediate 
D/v. In the limit as D/v--, c•, Cr becomes zero at all times 
while the distribution of C s converges to a square wave with 
unit concentration between T = 0 to 0.5 (Figure 2). To use the 
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Fig. 2. (a) Resident concentrations by (9) and (b) flux con- 
centrations by (18) as functions of dimensionless time at x - 0.1 m for 
a pulse duration Vto/X- 0.5 and for various values of D/vx (values 
indicated on curves). 

terminology of Bouma and Dekker [1978] a "short-circuit" of 
zero impedance occurs, and the flux conditions imposed at 
x = 0 are instantaneously propagated throughout the 
medium. As with the piston flow scenario, this limiting case 
may be approached but, of course, never achieved. 

The marked differences between temporal distributions of 
C, and C s have important but generally unappreciated impli- 
cations to the interpretation of laboratory tracer experiments 
as well as for field lysimeter and observation well data. Con- 
sider the case of transport through a finite soil column during 
steady water flow. Effluent solution is collected as it exits the 
column, and its concentration is determined as a function of 
time. To properly interpret the measured concentrations, it 
must be recognized that the values represent flux-averaged 
and not pore volume-averaged quantities. This is intuitively 
apparent if one considers the extreme case of flow through a 
fractured porous medium exhibiting large variations in micro- 
scopic pore water velocities. The effluent solution comes 
nearly exclusively from the larger pores, which "short-circuit" 
the input solution resulting in rapid breakthrough and ex- 

tended "tailing." However, the volume-averaged concentration 
within the column near the outflow boundary may be much 
less than that of the flux-averaged effluent solution, particu- 
larly during the peak effluent concentration phase. 

To pose macroscopic bo•nclary conditions for the exit 
boundary, we may proceed in the same manner as for the 
inflow boundary by imposing a flux continuity and assuming 
an infinitesimal boundary transition region, to obtain 

Ce-- O r ; aXilS=L_ (20) 
where C e = Ce(t ) is the concentration in the effluent and L- 
denotes that the quantities are evaluated approaching L from 
the interior of the porous medium. It is evident that Ce is 
precisely the definition of C s at x = L given by (11). Thus the 
analytical solution for C s given by (18) is to be used for Ce 
provided that we assume that C, for x < L is unaffected by the 
additional condition imposed on the solution that the spatial 
derivatives of C• are zero at x = oz. This provision imposes a 
mild restriction, since the outflow boundary of a column 
should have no effect on the upstream velocity distribution 
interior to the boundary layer during steady flow. If no back 
mixing occurs, then the solute distribution interior to the 
column will be unaffected by the boundary. Since the only 
mechanism of back mixing is diffusion, little error should 
result when hydrodynamic dispersion is the dominant mecha- 
nism of dispersion in the porous medium. In most practical 
instances, this will be the case. 

Equating C e and C s and employing (18) to describe the 
effluent-time data indicates that Figure 2b may b e interpreted 
as a family of breakthrough curves for columns of specified 
length x = L. The dimensionless time T corresponds physi- 
cally to the number of pore volumes of effluent. It should be 
mentioned that (18) often has been employed to describe efflu- 
ent concentrations from column tracer experiments but on the 
grounds that it represents C•(x, t) and that C•(L, t)= C fiL, t). 
This reasoning is incorrect, although tile result is fortuitously 
identical so long as only flux concentrations are dealt with. 
However, the implication that C• and C s are identical will 
lead to gross errors if subsequent predictions of C, are made. 
Since the assumption that C•(L, t)= CfiL, t) is intuitively un- 
reasonable for fractured porous media, it has been assumed 
frequently that a monocontinuum app.roach in such media is 
infeasible. The curves of Figure 2b show that the rapid break- 
through and tailing typical of such systems are, in fact, predic- 
ted by the flux concentration solution (18) for media of high 
dispersivity. 

If the observation scale is large compared to the scale of 
heterogeneity, it should be feasible to model the porous 
medium as a monocontinuum and employ (18) to determine 
transport coefficients from effluent breakthrough curves [e.g., 
van Genuchten, 1981; Parker and van Genuchten, 1984]. For 
subsequent predictions of C•(x, t), these coefficients may be 
employed with (9). Use of (18) to predict C•(x, t) on the as- 
sumption that Cr = C s will lead to gross errors for high- 
dispersivity media. If experimental values of C• are desired, 
appropriate extraction of sectioned columns must be per- 
formed. 

It is noteworthy that the area under the curves of Cf versus 
T from T = 0 to oo is constant and equal to the dimensionless 
pulse time Vto/X = 0.5 (Figure 2b). This indicates that the solu- 
tion meets the mass balance criteria: 
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C,(Z, t) dg = v [Co - Cs(x, z)] dr (21a) 

0<t<to 

; C,(Z, t) dg = v Co dr - v C fix, z) dr (2lb) 

t>to 

for any particular values of x and t where Z and r are dummy 
variables. For x - L, this simply states that the solute mass in 
the column equals the difference between cumulative inflow 
and outflow. In the limit as t • c•, the left-hand side of (21) 
goes to zero, and from the definition of T = vt/x, we obtain 

Vto_ fo © C s dT (22) x C O 

which is the observed result. 

Note that the integral in i22) involves C s, not C,. In some 
cases, solutions for C, have been employed to analyze effluent 
concentration data [e.g., Nkedi-Kizza et al., 1983]. With C, 
substituted for C s in (22), an inequality is obtained with the 
left-hand side always less than the right-hand side. This has 
the effect of making the apparent pore water velocity seem 
greater than the actual value to force a mass balance (i.e., 
retardation factors less than unity). The erroneous inference to 
be drawn is that some of the pore volume apparently excludes 
solute. This difficulty is not obtained when the solution appro- 
priate to the flux detection mode is employed. 

It is useful to also note that by differentiating (21) with 
respect to time or space, two additional transformations be- 
tween resident and flux concentrations are obtained; these 
transformations may be regarded as supplemental but funda- 
mentally equivalent to that of (11), namely, 

• c•C,(z, t•) dz + vCfix, t) = vCo 0 < t < to (23a) &t - 

• •C,(z, t•) dz + vCs(x, t) = 0 t > to (23b) Ot 

• OCs(x, r) C,(x, t)= -v c•x dr t > 0 (24) 

The solutions which we have presented for C, and C s satisfy 
these mass balance constraints. Solutions which fail to dis- 

tinguish between C, and C s generally will not satisfy these 
criteria. This is notably the case for solutions commonly ap- 
plied to column tracer studies which assume that the effluent 
concentration is equal to the resident concentration at x = L. 
An exception arises for the solution of the convection- 
dispersion equation given by Brenner [1962]. This solution 
imposes a third-type upper boundary condition and a zero 
gradient condition at x = L for C,. Equation (7) and (20) are 
thus satisfied; however, the assumption that •C•(L, t)/•x = 0 
forces the concentration to be continuous at the outflow as 

(20) reduces to Ce(t)= C•(L, t). Use of Brenner's solution for 
C• and evaluation of C s using (11) satisfies the conditions 
stipulated by (23) and (24) [van Genuchten and Parker, 1984]. 
Predicted concentrations at x- L thus yield physically ac- 
ceptable estimates of Ce from a mass balance standpoint. 
However, the assumption of concentration continuity at the 
exit seems inconsistent with the macroscopic treatment of the 
upper boundary at which the concentration is discontinuous. 
The rationalization of the zero gradient condition at the out- 

flow presumably arises from the intuitive argument that 
boundary layers cannot occur at outflow boundaries. Bound- 
ary layers external to porous media resulting from poor 
mixing of outflow solution indeed cannot occur. However, 
boundary layers may arise from the more general conception 
of boundary layers as transition regions within which trans- 
port parameters change from those of the bulk porous 
medium to those of the bulk solution. Accordingly, a macro- 
scopic concentration discontinuity at exit boundaries may be 
anticipated in high-dispersivity media, and the solutions for- 
mally derived from semi-infinite systems may be expected to 
provide a more suitable approximation of the boundary than 
Brenner's explicitly finite solution, which imposes a zero gradi- 
ent condition at the column exit. 

This rather heuristic argument against the applicability of 
Brenner's finite column solution is reinforced by consideration 
of the limiting case as D/v• c•, which yields for Brenner's 
solution at x = L, 

Ce/Co = 1 - e- T 

Ce/C ø = eTo - T __ 

while (18) yields, in the limit, 

C•/Co = 1 

CalCo = 0 

-T 

T_<To 
(25) 

T> To 

T_<To 

T> To 
(26) 

where Ce--Ce(t)= Cs(L, t) is the effluent concentration, 
T- vt/L is the eluted pore volumes, and To- Vto/L is the 
reduced pulse duration. Equation (25) describes a break- 
through curve (Ce/Co versus T) which for a continuous pulse 
passes through the origin, gradually increases to Ce/Co- 
0.632 at T = 1.0, and approaches Ce/Co -- 1.0 as T--• oz. This 
function contrasts sharply with the square wave for the limit- 
ing case described by (26) (Figure 2b). Brenner's solution is 
incapable of predicting this "short-circuiting" behavior which, 
as previously mentioned, fractured porous media are observed 
to approach. This diminishes the utility of Brenner's solution 
and throws further doubt on the appropriateness of the as- 
sumptions it invokes in posing the lower boundary condition. 

Analogous problems to those occurring in laboratory stud- 
ies arise in the interpretation of solution concentrations in 
samples taken from wells or lysimeters in the field. The least 
ambiguous field measurements are those obtained from large 
monolithic pan lysimeters which yield flux concentrations for 
a well-defined flow region. The effect of the exit boundary on 
the flow pattern, particularly for unsaturated conditions, is the 
only uncertainty (so long as the results are not extended 
beyond the bounds of the monolith). Subphreatic well samples 
are also most appropriately viewed as (local) flux con- 
centrations. Their significance to the interpretation of aquifer 
properties will depend on the formation's homogeneity and 
the magnitude of flow distrubances caused by the well. The 
interpretation of results from samples taken with small suction 
lysimeters in the unsaturated zone is much less certain. De- 
pending on the manner in which these units disrupt the local 
flow pattern, the sampled concentrations may yield resident 
concentrations or flux concentrations or anything in between. 

An additional complication to the interpretation of field 
solution samples arises because the sampled quantities gener- 
ally represent a small proportion of the total flow region of 
interest. If the scale of variabilty of pore water velocity is 
greater than the effective radius of the sampling device, then 
multiple samples will need to be taken to evaluate field-scale 
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areal averages of Cr or Cœ. Since scales of hydraulic property 
variations in g•eologic media are generally orders of magnitude 
larger than typical sampling devices, the need for numerous 
sampling locations is assured. 

Caution should be exercised in the interpretation of areally 
averaged solute concentrations. While resident concentrations 
may be meaningfully averaged to obtain larger (e.g., field-i 
scale •values, simple averages of flux concentrations have no 
corresponding direct physical interpretation. To define mean- 
ingful areally averaged flux concentrations, local con- 
centrations should be weighted by local hydraulic flux values 
so that (10) remains valid at the larger scale. Of course, the 
determination of field-scale values of Cr or Cœ in no way 
guarantees their conformance to a deterministic, monocontin- 
uum convection-dispersion model. At some scale of averaging 
within the plane perpendicular to flow, constraints on such an 
approach will arise. Howeyer, it appears likely that scale limi- 
tations may be less severe than has been thought, owing to 
misapplications and misinterpretations of various boundary 
conditions in finite and semi-infinite media. 

While we have confined our discussion to one-dimensional 

transport accompanying steady flow, the approach may be 
generalized. The definition of Cœ given by (11) may be ex- 
tended to multiple dimensions, in which case the vector nature 
bf C s becomes significant. In general, the flux transformation 
of the convection-dispersion equation will be valid only for 
constant D. For transient flow problems, solutions for C s may 
be obtained by local application of (11) after solving the non- 
linear problem for C• subject to a flux-type inlet boundary 
condition. 

REFERENCES 

Bear, J., Dynamics of Fluids in Porous Media, Elsevier, New York, 
1972. 

Bear, J. and Y. Bachmat, Transport phenomena in porous media: The 
basic equations, paper presented at the Advanced Study Institute 
on Mechanics of Fluids in Porous Media, NATO, Newark, Del., 
July 18-27, 1982. 

Bouma, J. and L. W. Dekker, A case study on infiltration into dry 
clay soil, 1, Morphological observations, Geoderma, 20, 27-40, 
1978. 

Bouma, J., and J. H. M. W6sten, Flow patterns during extended 
saturated flow in two undisturbed swelling clay soils with different 
macrostructures, Soil Sci. Soc. Am. J., 43, 16-22, 1979. 

Brenner, H., The diffusion model of longitudinal mixing in beds of 
finite length: Numerical values, Chem. Eng. Sci., 17, 229-243, 1962. 

Brigham, W. E., Mixing equations in short laboratory columns, Soc. 
Pet. Eng. J., 14, 91-99, I974. 

Kreft, A., and A. Zuber, On the physical meaning of the dispersion 
equation and its solutions for different initial and boundary con- 
•ditions, Chem. Eng. Sci., 33, 1471-i480, 1978 

Kreft, A., and A. ZUber, On the use of the dispersion model of fluid 
flow, lnt J. Appl. Rad. lsOt., 30, 705-708, 1979. •: 

Lapidus, L., and N. R. Amundson, Mathematics of adsorption in 
beds, 6, The effect of longitudinal diffusion in ion exchange and 
chromatographic columns, J, Phys. Chem., 56, 984-988, 1952. 

Lindstrom, F. T., R. Haque, V. H. Freed, and L. Boersma, Theory on 
the movement of some herbicides in soils: Linear diffusion and 

convection of chemicals in soils, J. Environ. Sci. Tech., 1, 561-565, 
1967. 

Nkedi-Kizza, P., J. W. Biggar, M. Th. van Genuchten, P. J. Wierenga, 
H. M. Selim, J. M. Davidson, and D. R. Nielsen, Modeling tritium 
and chloride 36 transport through an aggregated oxisol, Water 
Resour. Res., 19, 691-700, 1983. 

Parker, J. C., and M. Th. van Genuchten, Detei'mihing transport 
parameters from laboratory and field tracer experiments, Va. Agric. 
Exp. Stn. Bull., 84-3, 1984. 

Pearson, J. R. A., A note on the "Danckw•erts" boundary condition 
for continuous flow reactors, Chem. Eng. Sci., 10, 281-284, 1959. 

Rao, P.S. C., D. E. Rolston, R. E. Jessup, and J. M. Davidson, Solute 
transport in aggregated porous media: Theoretical and experi- 
mental evaluation, Soil Sci. Soc. Am. J., 44, 1139-1146, 1980. 

Rose, C. W., F. W. Chichester, J. R. Willi•ims, and J. T. Ritchie, 
Application of an approximate analytic method of computing 
solute profiles with dispersion in soils, J. Environ. Qual., 11, 151- 
155, 1982. 

Sidle, R. C., and L. T. Kardos, Nitrate leaching in a sludge-treated 
forest soil, Soil Sci. Soc. Am. J., 43, 278-282, 1979. 

Skopp, J., and A. W. Warrick, A two-phase model for the misdble 
displacement of reactive solutes in soils, Soil Sci. Soc. Am. proc., 38, 
545-550, 1974. 

van Genuchten, M. Th., Non,equilibrium transport parameters from 
miscible displacement experiments, USDA-SEA Res. Rep. 119, U.S. 
Salinity Lab., Riverside, Calif., 1981. 

van Genuchten, M. Th., and J. C. Parker, Boundary conditions for 
displacement experiments through short laboratory soil columns, 
Soil Sci. Soc. Am. J., in press, 1984. 

van Genuchten, M. Th., and P. J. Wierenga, Mass transfer studies in 
sorbing porous media, 1, Analytical solutions, Soil Sci. Soc. Am. J., 
40, 473-480, 1976. 

J. C. Parker, Agronomy Department, Virginia Polytechnic Institute 
and State University, Blacksburg, VA 24061. 

M. Th. van Genuchten, U.S. Salinity Laboratory, 4500 Glenwood 
Drive, Riverside, CA 92501. 

(Received October 25, 1983; 
revised March 8, 1984; 

accepted March 15, 1984.) 


