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Summary

Uncertainties in soil organic carbon (SOC) stock assessments are rarely quantified even though they are

critical in determining the significance of the results. Previous studies on this topic generally focused on

a single variable involved in the SOC stock calculation (SOC concentration, sampling depth, bulk density

and rock fragment content) or on a single scale, rather than using an integrated approach (i.e. taking into

account interactions between variables). This study aims to apply such an approach to identify and quantify

the uncertainties in SOC stock assessments for different scales and spatial landscape units (LSU) under

agriculture. The error propagation method (d method) was used to quantify the relative contribution of

each variable and interaction involved to the final SOC stock variability. Monte Carlo simulations were

used to cross-check the results. Both methods converged (r2¼0.78). As expected, the coefficient of varia-

tion of the SOC stock increased across scales (from 5 to 35%), and was higher for grassland than for

cropland. Although the main source of uncertainty in the SOC stock varied according to the scale and

the LSU considered, the variability of SOC concentration (due to errors from the laboratory and to the

high SOC spatial variability) and of the rock fragment content were predominant. When assessing SOC

stock at the landscape scale, one should focus on the precision of SOC analyses from the laboratory, the

reduction of SOC spatial variability (using bulk samples, accurate re-sampling, high sampling density or

stratified sampling), and the use of equivalent masses for SOC stock comparison. The regional SOC

stock monitoring of agricultural soils in southern Belgium allows the detection of an average SOC stock

change of 20% within 11 years if very high rates of SOC stock changes occur (1 t C ha–1 year–1).

Amplitude et sources des incertitudes liées aux estimations des stocks de carbone organique
dans le sol (COS) à différentes échelles

Résumé

Les erreurs associées aux estimations du stock de carbone organique dans le sol (COS) sont rarement

quantifiées bien qu’elles puissent empêcher l’obtention de résultats significatifs. Les quelques études qui le

font focalisent en général sur une seule variable nécessaire au calcul du stock de COS (concentration enCOS,

profondeur échantillonnée, densité apparente et contenu en fragments rocheux) ou sur une échelle spatiale

particulière, sans utiliser d’approche intégrée (prenant en compte les interactions entre les variables). Cette

étude a pour objectif d’utiliser une telle approche pour identifier et quantifier les incertitudes liées aux

estimations de stock de COS à différentes échelles spatiales et pour diverses unités spatiales de paysages

(USP) agricoles. La loi de propagation des erreurs (méthode d) permet de quantifier la contribution relative

de chaque variable et interaction à la variabilité finale du stock de COS. Les simulations de Monte Carlo

sont utilisées pour la vérification croisée des résultats. Les deux méthodes ont convergé (r2 ¼ 0.78).

Comme prévu, le coefficient de variation du stock de COS a proportionnellement augmenté avec l’échelle

spatiale considérée (de 5 à 35%), et était plus élevé pour les cultures que pour les prairies. Bien que la prin-

cipale source d’erreur sur le stock de COS soit fonction de l’échelle spatiale et du type d’USP considérés, la

variabilité du contenu en COS (du fait des erreurs de laboratoire et de sa grande variabilité spatiale) et du
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contenu en fragments rocheux étaient prédominants. Lors de l’estimation des stocks de COS à l’échelle du

paysage, l’attention devrait prioritairement porter sur la précision des analyses en COS du laboratoire, la

réduction de la variabilité spatiale du COS (en utilisant des échantillons composites, un ré-échantillonnage

précis, une densité d’échantillonnage élevée ou un échantillonnage stratifié), et sur l’utilisation de masses

équivalentes pour comparer les stocks de COS. Le réseau régional de suivi des stocks de COS des sols agri-

coles dans le sud de la Belgique permet la détection d’un changement de stock de COS moyen de 20% en

11 ans pour un taux très élevé de changement en stock de COS (1 t C ha–1 year–1).

Introduction

Soil organic carbon (SOC) stock is an important issue in the

context of climate change (soils being potential sinks or sources

of CO2) and of soil degradation (EC, 2006). The Kyoto Pro-

tocol, the EU soil thematic strategy and the European Com-

mon Agricultural Policy rely on SOC stock assessment as part

of the greenhouse gas emission budget, the verification of

changes in soil organic matter, or for the implementation of

agri-environmental measurements (SOC management). How-

ever, SOC stock assessments are associated with large uncer-

tainties that may impair the detection of temporal SOC stock

changes and the identification of the main driving forces

involved (Falloon & Smith, 2003; Ogle et al., 2006).

Uncertainties are difficult to quantify and to identify because

they stem from complex interactions between the variables

involved in SOC stocks (i.e. SOC concentration, bulk density,

sampling depth and rock fragment content). Uncertainties arise

frommanipulation, instrumental limitations and environmental

variability in each variable. Different types of errors can be dis-

tinguished: systematic and random. Mathematical expressions

of uncertainties may refer to the level of accuracy (usually

represented by the mean error–ME) or precision (commonly

represented by the standard deviation) (see Note 1, p 15).

Although uncertainties need to be reduced, knowledge of uncer-

tainty can also be used to optimise the design of a SOC

stock monitoring scheme, as illustrated by the concept of the

minimum detectable difference (MDD) in SOC stock: given

the estimated variance in the SOC stock of a population and

the MDD to achieve, the number of samples to collect can be

adapted for a fixed level of confidence (Sokal & Rohlf, 1995;

Zar, 1999). Besides, given a rate of SOC stock change, the

time needed to detect the MDD can also be estimated (Smith,

2004). It is therefore essential to quantify and identify uncertain-

ties in order not only to improve the design of SOC stock moni-

toring schemes, but also to use the results of SOC stock

assessments properly for political and societal decisions (Saby

et al., 2008).

Some studies have focused on particular aspects of uncertain-

ties in SOC stocks, such as the impact of using different analy-

tical methods for SOC concentration determination. It has been

shown that the precision (CV) of such analytical methods could

range from 1.2 to 15.8% for the loss-on-ignition method (LOI),

from 1.6 to 4.2% for the Walkley & Black method (WB), and

from 1.3 to 7.1% for dry combustion (Lowther et al., 1990;

Soon & Abboud, 1991; Sutherland, 1998; Bowman et al., 2002),

and that the relationships between the results from these differ-

ent methods depended on the type of soil considered. Further-

more, the general underestimation of the total organic carbon

concentration (TOC) by the WB method requires a correction

factor that may vary from 1 to 1.6 according to land use, soil

type (especially soil texture), SOM quality, sampling depth, or

climate (Wang et al., 1996; Jolivet et al., 1998; Dı́az-Zorita,

1999; Brye & Slaton, 2003; Lettens et al., 2007). Therefore, the

choice of a method to determine the SOC concentration already

has an impact on the quality of the results and the use of empiri-

cal relationships or correction factors should preferably be

related to the situation studied. Other studies on uncertainties in

SOC stocks assessment have highlighted the importance of

directly measuring the soil bulk density (BD), as indirect BD

estimates based on pedotransfer functions can lead to errors

from 9% up to 36% of the SOC stock (Boucneau et al., 1998;

De Vos et al., 2005). The use of random errors in the SOC con-

centration either in geostatistics for spatial issues or in the MDD

approach for monitoring design purposes has also been widely

illustrated. While geostatistical models provided SOC maps at

various scales based on the spatial variability of SOC, they still

gave large variability at short distances (i.e. nuggets) resulting in

inherent errors of prediction (Robertson et al., 1993; Delcourt

et al., 1996; Geypens et al., 2000; Zhang & McGrath, 2004). The

application of the MDD for SOC stock, usually at the micro-

site scale (Conant et al., 2003), the field scale (Johnson et al.,

1990; Garten & Wullschleger, 1999; Kucharik et al., 2003;

Poussart et al., 2004) or more recently the regional scale (Saby

et al., 2008), showed the high sampling density needed to

detect differences in SOC stocks between two locations or sur-

veys. While these studies provided insights into various sour-

ces of variability, they (i) do not consider uncertainties in the

SOC stock in an integrated approach, i.e. resulting from the

propagation of individual errors and their interaction and (ii)

only focus on a single variable or a single scale. It is therefore

difficult to compare the results from these different studies in

order to identify the relative weights of the main errors

involved in the total uncertainty in SOC stock assessment, and

for different scales of interest.

However, the concept of error propagation can be directly

applied to the mathematical expression of SOC stock, since
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the random error (i.e. the variance, s2) in the SOC stock comes

from the propagation of the random errors in each variable

used in the SOC stock equation. Given that these individual

random errors and interaction are first estimated, their propa-

gation can be assessed by different methods: i) the Monte

Carlo simulation method (MC), which generates numerous

SOC stocks using random values for each individual variable

(stochastic approach) (Hammersley & Handscomb, 1964;

Rubinstein, 1981), or ii) the classical method of the law of

covariances associated with the Taylor method (also called

‘‘the statistical differentials method’’ or the ‘‘d method’’)

(Goodman, 1960; Ku, 1966; Wells & Krakiwsky, 1971;

Mardia et al., 1979), which gives a general equation for the

error propagation in non-linear functions (deterministic

approach). The advantage of the ‘‘d method’’ is to give an

explicit equation for the final SOC stock variability (i.e. the

solution comes in an analytical form), which allows one to

quantify the relative contribution of the individual sources of

uncertainties as well as their interaction (Heuvelink, 1998).

However, when more complex functions than the SOC stock

are considered, the MC method is easier to implement even if

a large number of runs might be needed. Note that the MC

simulations can also be used to cross-check the result (i.e. the

SOC stock variability) given by the ‘‘d method’’.

While integrated approaches have increasingly been applied

to the uncertainty assessment of SOC stocks (Janik et al., 2002;

Ogle et al., 2003; VandenBygaart et al., 2004; Falloon et al.,

2006; Post et al., 2008), they are mainly restricted to MC ana-

lyses and applied to predictive C models (either dynamic ones

such as the RothC model, or empirical ones such as the IPCC

method). To our knowledge, only two recent studies have

applied the approach based on the ‘‘d method’’ to the SOC

stock equation. Schwager & Mikhailova (2002) have illus-

trated the error propagation function for various sampling si-

tuations within one field, while Dileep et al. (2008)

demonstrated the importance of taking covariances into

account in the estimation of SOC stock variability.

Goidts & van Wesemael (2007) presented a methodology to

assess SOC stocks and their evolution at a regional scale (south-

ern Belgium) by re-sampling a reasonable number of locations

belonging to spatial landscape units (LSU). Many questions

still remain about the accuracy of a method based on stratified

re-sampling, the sources of uncertainties and their importance

across different scales. Given these questions, themain objective

of this studywas to identify and quantify the uncertainties in this

particular SOC stock assessment using an integrated approach.

The specific objectives were (1) to quantify the uncertainties in

SOC stock occurring at different scales and for different types of

LSU under agriculture, (2) to identify the main sources of these

uncertainties, together with their relative importance, and (3) to

provide guidelines to increase the potential of a regional SOC

monitoring scheme to detect SOC changes.

Therefore, both the ‘‘d method’’ and the MC analysis were

used at various scales (sample, microsite, field and landscape)

and for different types of LSU encountered in the study area.

The results obtained were then used to assess the accuracy and

precision of the SOC stock monitoring implemented in south-

ern Belgium and to give guidance for setting up such a moni-

toring scheme.

Material and methods

Sampling scheme

Southern Belgium (Wallonia) had been stratified into spatial

landscape units (LSU) for the previous assessment of the SOC

stocks of agricultural soils and their evolution (Goidts & van

Wesemael, 2007). The LSU are the result of the stratification of

the study area according to three criteria: the agricultural land

use (cropland or permanent grassland), the agricultural region

(i.e. broad zones of similar geology, soil type, relief, climate and

agricultural management), and the soil type (soil texture and

drainage). EachLSU is characterised by anumber of soil profiles

that were originally sampled in the 1950s during the National

Soil Survey (NSS) according to a directed sampling (in order to

draw the Belgian soil map) (De Leenheer et al., 1968). 15 LSU

in total, covering about 54% of the agricultural area and each

represented by 28 geo-referenced soil profiles on average, were

re-sampled fifty years later in order to initiate a monitoring

network (‘‘CARBOSOL’’). These soil profiles are under an

agricultural land use, have not undergone any land use change

since the 1950s, and were retrieved with a high level of confi-

dence (agreement between the observations made in the field,

and the geographical coordinates, the topography and the soil

profile horizonation originally described in the NSS).

For each soil profile used in the regional SOC stock assess-

ment, a composite soil sample (of 5 subsamples) was taken

within a circle of 4 m radius (the microsite) centred on the soil

profile (Figure 1). Subsamples were taken at a regularly increas-

ing distance from the centre of the microsite (every 0.8 m) and

along each cardinal direction. Sampling was done with an auger

by horizon up to a depth of 30 cm (except for cropland when

the plough depth was below 30 cm, then only one soil sample

was taken up to the plough depth). These composite samples

were further used to analyse the SOC and rock fragment con-

tent (RM) of each horizon. Three intact cores of 100 cm3

(diametercore¼ 5.3 cm) were additionally taken within the

microsite in order to measure the corresponding soil bulk den-

sity (BD) of each layer sampled (the BD was assumed to be

constant within one soil horizon). When rock fragments pre-

vented the insertion of the core in the soil, another position

within the microsite was chosen nearby until three samples

were obtained for the BD (this procedure can, however, lead

to an underestimation of the effective rock fragment content).

Four LSUwere selected for further investigation on uncertain-

ties in the estimated SOC stocks. As there is a main gradient from

the northwest to the southeast part of Wallonia in environment

and land use characteristics (Note 2), the four LSU selected for
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this study are situated on each endof the gradient, i.e. twoLSU in

the North (the Loam region) and two LSU in the South (the

Ardenne) with both types of land use represented (cropland and

permanent grassland). Each of these LSU comprises between 23

and 47 geo-referenced soil profiles for which data needed to esti-

mate the SOC stock are available, and these LSUs cover a dis-

continuous area ranging from 86 to 1407 km2 (Table 1).

Different scales of interest can be found in the network imple-

mented: from the sample scale (soil sample), to the microsite

scale (3 to 5 samples within a circle of 4 m radius), the field scale

(samples from the re-sampling within the same field), the land-

scape scale (samples fromall soil profiles belonging to oneLSU),

and finally themost aggregated level, the regional scale (samples

from all the soil profiles of the network). Uncertainties at each

spatial level can therefore be studied using the same methodo-

logy and be compared.

Laboratory analyses and SOC stock calculation

Bulk soil samples were air-dried, sieved (2 mm), and analysed

for SOC according to theWalkley&Blackmethod (Walkley&

Black, 1934) commonly used for soil routine analyses in the

study area. As previously mentioned, this method requires

a correction factor in order to correct for incomplete oxidation

and estimate total OC concentration. The standard factor of

1.3 has been chosen as no specific study was available for

our situation. However, this factor might be underestimated

especially for grassland or soils with the highest reactive

clay content. The BD was determined gravimetrically (includ-

ing drying of the undisturbed soil sample at 105°C) and

corrected for rock fragments (Note 3) (using the rock frag-

ment mass measured and the bulk density of the stones from

CRC, 1996).

The SOC stock was calculated according to the following

equation (equation 1):

stock ¼ d � C � BD � ½1 � RM�
100

ð1Þ

where stock is the SOC stock (t C ha–1), d is the sampling depth

considered (m), C is the soil organic carbon concentration (g C

kg–1), BD is the bulk density (kg m–3), and RM is the mass pro-

portion of rock fragment content (dimensionless).

Propagation of errors

The ‘‘d method’’ is based on the law of covariances and on the

linearization of non-linear functions through their Taylor

series expansion (Goodman, 1960; Ku, 1966; Mardia et al.,

1979; Rice, 1995; Weisstein, 1999; Lindberg, 2000). The gen-

eral equation was taken from Wells & Krakiwsky (1971)

(equation 2):

+y ¼ J+xJT ð2Þ

where Ry and Rx are the variance-covariance matrices of two

random vectors of the variables y and x, respectively y and x,

with y a non-linear function of x (y ¼ f(x)). J is the Jacobian

matrix of f(x) (with JT the transposed J) and is defined as:

Figure 1 Sampling scheme of each soil profile sampled

for the SOC monitoring network of southern Belgium

(CARBOSOL).
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Applied to the SOC stock equation (equation 1 where stock is

the one dimensional vector y function of x), the Jacobian

matrix becomes:

J¼
�
df1
dx1

...
df1
dxn

�

¼
�

CBDð1�RMÞ
100

dBDð1�RMÞ
100

dCð1�RMÞ
100

�dCBD

100

�
ð4Þ

The general error propagation equation (equation 2) can be

re-written and solved:

Ry ¼ s2stock

¼ JRxJT

¼ ðstockÞ2 � X�½
ð5Þ

with

X ¼ s2d
d2
þ s2C

C2
þ s2BD

BD2
þ s2RM

ð1�RMÞ2
þ 2

sdC

dC
þ 2

sdBD

dBD

þ 2
sCBD

CBD
� 2

sdð1�RMÞ
dð1 � RMÞ � 2

sCð1�RMÞ
Cð1 � RMÞ

� 2
sBDð1�RMÞ

BD 1 � RMÞð
ð6Þ

where sd, sC, sBD and sRM are the standard deviations of

respectively d, C, BD and RM, and sdC, sdBD, sCBD, sd(1–RM),

sC(1–RM) and sBD(1–RM) are their covariances (Note 4).

Covariances are usually not taken into account due to the

common use of simplified forms of equation 2. However, cova-

riances may decrease or increase s2stock and should therefore be

estimated (Dileep et al., 2008). Covariances can directly be

assessed for each LSU and scale when enough replicate sam-

ples are available, which is only the case for the landscape

scale (; 30 for each LSU, see previous subsection on the sam-

pling scheme). The covariances for the finer scales of each

LSU (the sample, the microsite and the field scale) have to be,

therefore, indirectly estimated. A nested sampling would have

been more judicious to separately compute covariances (Lark,

2005), but the choice of the sampling scheme was made prior

to this uncertainty analysis. The indirect estimate of the cova-

riances at finer scales was therefore based on the assumption

of no scale-dependence of the correlations between the varia-

bles of equation 1 within a same LSU (equation 7). This

means that the processes responsible for the data covariances

were considered to be the same across the scales of one LSU,

as the LSU definition explicitly excludes contrasting processes

which may largely influence the data covariance (such as

a change in land use or in soil type). While the assumption of

the scale-dependence of correlation can be tested for continu-

ous approaches (based on the co-dispersion coefficient or on

the wavelet transform; Goovaerts & Webster, 1994; Lark et al.,

2004), it remains difficult to check this assumption in the case

of our sampling scheme. However, other studies implicitly use

this assumption of no scale-dependence, e.g. when applying the

same pedotransfer function regardless of the scale considered.

Therefore, while some caution is required in the results, the

covariances at finer scales were calculated for each LSU based

on the estimated covariances at the landscape scale and on

individual variances estimated for each scale (equation 8):

Table 1 Main characteristics of the topsoil (first horizon) of the land-

scape units (LSU) used to assess the uncertainties on the soil organic

carbon stocks for the period 2005-2006 (SOC - Soil Organic Carbon; d -

depth of the first horizon; BD - Bulk Density; RM - Rock fragment

content by mass)

unit LSU 4 LSU 14 LSU 5 LSU 15

Land use cropland cropland grassland grassland

Agricultural

region

Loam Ardenne Loam Ardenne

Agricultural

management

intensive extensive intensive extensive

Areaa /km2 1407 86 255 756

n 47 23 26 32

SOCb /g C kg–1 10.8 29.0 25.3 34.9

dc /m 0.25 0.29 0.21 0.21

BDb /kg m–3 1393 1027 1278 1095

RMb /% 0 24 0 19

SOC stockb /t C ha–1 36.6 64.0 71.9 64.6

Clay /% 14.3 16.8 12.2 16.6

Silt /% 79.3 60.3 77.3 59.8

Sand /% 5.4 23.9 8.5 23.6

Soil texture /d A G A G

/e Silt

(loam)

Stony

loam

Silt

(loam)

Stony

loam

Soil drainage /f 1 1 1 1

a Potential area if no land use change has occured between 1955 and 2005
bVariables normally distributed within each LSU (Kolmogorov-

Smirnov test).
cVariable not normally distributed for unit 14 and 15 (Kolmogorov-

Smirnov test).
dSymbol from the Belgian legend, Hanotiaux (1992).
eAccording to the USDA textural triangle, Soil Survey Staff (1951); as

the Belgian legend describes the soil texture in more details, parentheses

are used to indicate the non-dominant soil texture.
fSimplified from the Belgian legend; 1 ¼ good to moderate drainage.
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rxyi
¼ rxy landscape

ð7Þ

sxyi
¼

sxi
syi

sxy landscape

sx landscape
sy landscape

ð8Þ

where x and y are the variables considered (d, C, BD or RM), sx

and sy are their standard deviations, rxy and sxy are respec-

tively the correlation and the covariance between the variables

x and y, and i is the finer scale considered (sample, microsite or

field scale).

Based on the estimated variances and covariances of each

variable for the different scales, the total random error on the

SOC stock (sstock
2 ) can be assessed with both the d method

(equation 5) and the Monte Carlo simulations (MC) for each

LSU considered. For the MC approach, 100,000 random

numbers (normally distributed with a mean of zero and a vari-

ance of 1) of each variable were first generated (while this is in

agreement with the variable distribution at the LSU scale, the

normality of the variable distribution at finer scales was

assumed). The vector obtained for each variable was con-

strained by multiplying it with a matrix characterised by pre-

viously estimated variances and covariances and finally

inserted in equation 1 to simulate the corresponding number

of SOC stocks. The standard deviation of each SOC stock

population was therefore evaluated, and compared to that

from the d method to cross-check the deterministic and the

stochastic propagation of errors. The d method enables quan-

tification of the contribution of each term of equation 5 thanks

to the linear form of this equation. For clarity, a distinct nota-

tion for the standard deviation or covariance (s) and their esti-

mates (s) will be used from now on.

Quantification of uncertainties in the SOC stock at various

scales

For each elementary unit of the scale considered (i.e. the soil

sample, the microsite, the field or the landscape), the standard

deviation of each variable and its corresponding coefficient of

variation (CV ¼ 100 � s/mean, %) were assessed as a measure

for the extent of the uncertainty. The propagation of these

estimated standard deviations (s) in equation 5 allowed calcu-

lation of the final variability of the SOC stock (sstock) for the

elementary unit considered. In addition, biases (mean error -

ME, equation 9) and root mean square errors (RMSE, equa-

tion 10) were assessed for each variable and scale when

possible by comparing the data from independent sampling

campaigns. This results in an evaluation of the quality of the

sampling schemes.

ME ¼ 1

n
+
n

i¼1
ðxi1 � xi2Þ ð9Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n
+
n

i¼1
ðxi1 � xi2Þ2

s
ð10Þ

where xi1 and xi2 are the value obtained from independent

sampling for the variable x, and n is the total number of repli-

cates (i) considered. The impact of taking or not into account

equivalent masses when comparing SOC stock from two sur-

veys on the same locations (using the equivalent mass of the

second survey as the reference in our case) was also evaluated

for the field and the landscape scale (Ellert et al., 2002).

The sample scale. Forty-six soil samples were sent twice to the

same laboratory for total OC analyses with theWalkley&Black

(1934) methodology. Soil samples were chosen in order to cover

the SOC range encountered in southern Belgium (from 0 to 85 g

C kg–1). Given the SOC concentration of the sample consid-

ered, the appropriate sC can be propagated in equation 5 to

assess the error in the SOC stock at the sample scale. The rep-

licate samples were used to assess the standard deviation of the

SOC concentration (sC). An estimated precision of 10–2 m in

the sampling depth was assumed (sd). Estimated standard

deviations of BD (sBD) and RM (sRM) were determined with

equation 2 applied to the formula used to calculate BD and

RM (based on estimated errors of 10–3 kg on weights and 10–6

m3 on volumes measured).

The microsite scale. Standard deviations were estimated using

subsamples taken inthefirst soilhorizonwithin the samemicrosite.

For sC, the five subsamples taken within the microsite to form

the composite sample (see Figure 1) were individually available

and therefore used to estimate the sC. For sBD and sRM the three

individual cores were used, except that for the sRM calculation,

instead of taking the mean of the three cores in the formula, the

RM value from the composite sample was used (this composite

sample having a larger volume than the core and being made of

the 5 subsamples also taken within the same microsite) in order

to avoid an underestimation of sRM. sd was assumed to be equiv-

alent to the precision at the sample scale (i.e. 10–2 m).

The field scale. In our sampling scheme, the field scale corre-

sponds to the area having a similar soil type and topography

within a field. This area is only represented by two samples at

a variable distance. These two samples were originally taken for

LSU 4 and 5 in order to estimate the error when trying to re-

sample the same location in a subsequent survey by another

surveyor and according to the same methodology. However,

in order to keep the error propagation approach coherent over

the different scales involved in our sampling scheme, and despite

the caution needed at that scale (as the standard deviations are

estimated with only 2 samples), the error propagation assess-

ment was also carried out. sC and sBD were determined using C

and BD measurements from both re-sampling surveys. sd was
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assessed for cropland based on the plough depth recorded by

the surveyor and the one assumed by the farmer (known from

questionnaires), and for grassland based on the depth of the

first horizon recorded by each surveyor.

The LSU scale. The landscape scale corresponds in our study to

the discontinuous area covered by the LSUand is represented by

all the soil profiles included in the LSU. The standard deviation

of the soil profiles in the LSUwas assessed for each variable (sC,

sBD, sRM, sd) and also for the SOC stock (sstock). In addition, the

underlying assumption that any location belonging to a parti-

cular LSU will have the same SOC concentration was vali-

dated against the independent database ‘‘POLLUSOL’’ (Bock

et al., 2003). POLLUSOL focuses on the same area and con-

tains SOC data collected during almost the same period as the

one in our study (the potential SOC change between 2003 and

2005 should be negligible for such a short period). POLLU-

SOL was stratified into the same LSU (thanks to georefer-

enced data), and the soil profiles included in these LSU (from 1

to 13 soil profiles per LSU) were checked for their unchanged

land use since the 1950s (to fulfil the same initial conditions

than our sampling scheme). SOC analyses of the first horizon

from both databases were compared for the LSU available (13

out of 15 in total). The overall error of prediction of the SOC

concentration with the LSU approach was evaluated using the

soil profiles of the 13 LSU all together (RMSEP). The error of

prediction of each individual LSU was also assessed

(RMSEPLSU). In addition, RMSEPLSU was compared to the ini-

tial estimated standard deviation in SOC concentration of the

corresponding LSU (sC LSU) to check for possible under- or

over-estimation. The validated standard deviation of the SOC

concentration of each LSU (sC LSU val) was considered to be the

maximum between RMSEPLSU and the corresponding sC LSU.

Quantification of the uncertainties for the 4 LSU. The standard

deviation of each variable previously estimated for each scale

was averaged for each LSU considered (Table 2) ( sC, sBD, sd,

sRM , sstock), based on the number of elementary units (i.e. soil

sample, microsite, field or landscape) available in each LSU.

For sC at the sample scale, the SOC concentration range of the

LSU was taken into account (as sC increases with the SOC

concentration). As sC at the microsite scale was only estimated

Table 2 Average estimated standard deviation ( s) and coefficient of variation (CV) on the soil organic carbon content (C), the bulk density (BD), the

rock fragment content by mass (RM), the sampling depth (d) and the total soil organic carbon stock (stock) at various scales (sample, microsite, field

and landscape) and for the landscape units (LSU) considered (see Table 1)

C BD RM d stocka

d method MC

s CV s CV s CV s CV s CV s CV

Scale LSU /g C kg–1 /% /kg m–3 /% /% /% /m /% /t C ha–1 /% /t C ha–1 /%

Sample unit 4 1.3b 12 20 1 / / 0.01 4 4.3 12 4.2 12

unit 14 1.1b 4 20 2 1 3 0.01 3 3.7 6 2.5 4

unit 5 1.1b 4 19 1 / / 0.01 5 3.7 5 2.9 4

unit 15 1.4b 4 20 2 1 4 0.01 5 5.2 8 3.1 5

Microsite unit 4 0.9 8 48 3 / / 0.01 4 3.4 9 3.2 8

unit 14 (2.3)c (8)c 55 5 5 22 0.01 3 6.2 10 4.9 8

unit 5 3.7 15 54 4 / / 0.01 5 8.5 12 7.8 11

unit 15 (5.1)c (15)c 73 7 11 62 0.01 5 10.5 16 11.0 17

Fieldd unit 4 0.8 8 92 7 / / 0.02 9 5.6 15 4.8 13

unit 14 (2.3)c (8)c (68)c (7)c 10 40 (0.03)c (9)c 10.7 17 11.4 18

unit 5 3.4 13 81 6 / / 0.03 14 18.3 26 7.9 11

unit 15 (4.7)c (13)c (69)c (6)c 10 60 (0.03)c (14)c 11.4 18 13.0 20

Landscape unit 4 1.6 15 85 6 / / 0.02 9 5.7 15 5.6 15

unit 14 6.5 22 157 15 11 43 0.03 10 15.3 24 11.5 18

unit 5 8.5 34 111 9 / / 0.06 27 25.0 35 20.7 29

unit 15 7.7 22 143 13 10 58 0.05 24 17.0 26 18.6 29

aTwo methods are used to assess sstock: the d method and the Monte Carlo simulation (MC) (see method section).
bFunction of the C range of the LSU considered.
cNo replicate sampling was done for this LSU, therefore the same CV than the LSU under a similar land use was applied.
dSomecautionat this scale: as the replicate samplingof thefieldwasdoneonce andwasmostly drivenby the re-sampling of apositionaccording to similar

soil and topography caracteristics, the scale considered is more representative of the subfield scale than of the field scale.
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for units 4 and 5 (in total, 30 microsites with individual sub-

samples were available in the Loam region–28 under cropland

from units 4 and 2 under grassland from unit 5), sC of units 14

and 15 were estimated using the coefficient of variation

(CV) of the unit in the Loam region having the same land use

(CVunit 4 ¼ CVunit 14 and CVunit 5 ¼ CVunit 15). Similarly, sC and

sBD of units 14 and 15 at the field scale were estimated from

the CV of units 4 and 5, although the presence of rock frag-

ments is likely to inflate the CV. sRM of units 14 and 15 at the

field scale was assumed to reach a coefficient of variation (CV)

of 40% for cropland (unit 14) and 60% for grassland (unit 15),

based on the CV for RM measured at other scales.

Results

Uncertainties in the individual variables involved in SOC

stock calculations

Extent of the variability across scales. The average precision

of the prepared samples (i.e. dried and sieved) sent to the labo-

ratory ranged from 1.1 to 1.4 g C kg–1 for the four LSU

(Table 2), with an overall precision of 2.0 g C kg–1 for the 46

replicate samples (CV of 6.8%). Despite the slight increase of

the value of sC with the SOC concentration of the sample

(results not shown), the highest CVs (up to 23% of the sample

SOC concentration) were observed for soils having a low SOC

concentration (< 13 g C kg–1). Hardly any systematic error

was found in the methodology used by the laboratory for SOC

concentration analyses (ME ¼ 0.7 g C kg–1, Table 3). sC at the

microsite scale ranged between 0.9 and 2.3 g C kg–1 for crop-

land (CV of 8%; units 4 and 14) and between 3.7 and 5.1 g C

kg–1 for grassland (CV of 15%; units 5 and 15) (Table 2). sC at

the field scale were similar to those at the microsite scale. The

CV were the highest for the landscape scale, with CV ranging

from 22 to 34% for grassland (units 5 and 15) and from 15 to

22% for cropland (units 4 and 14) (Table 2).

The BD variability was negligible at the sample scale

with a CV of 1 to 2%. This CV stayed under the level of

10% at all the other scales, except for stony soils of units 14

and 15 at the landscape scale (average CV of 14%) (Table 2).

While the RM variability was small at the sample scale (CV

from 3 to 4%), it dramatically increased from the microsite

scale upward (CV of 22% for cropland and of 62% for grass-

land) (Table 2). sd, assumed to be 1 cm at the sample and the

microsite scale, corresponded to quite small CVs (from 3 to

5%), but increased at the field (2 < sd < 3 cm) and landscape

scale (2 < sd < 6 cm), especially for grassland (CV up to 27%

- 6 cm) (Table 2).

Errors from an imprecise re-sampling of locations at the field

and landscape scale. The error in distance arising from an

imprecise re-sampling by different surveyors having similar

information ranged from 1.5 to 68.6 m, with an average of 7.4

m for cropland (median of 4.5 m) and 10.7 m for grassland

(median of 6.0 m). The increase in the absolute error in the

variablesmeasuredwith thedistancewasnot highlighted (results

not shown).

The methodology of re-sampling presented hardly any bias

at the field scale for both the SOC concentration and the BD

(MEC ¼ 0.4 g C kg–1 and MEBD ¼ – 8 kg m–3), while it was not

Table 3 Magnitude of the errors arising from the methodology used in the soil organic carbon (SOC) monitoring of non stony soils, for each variable

involved in the SOC stock calculation. The mean error (ME) and the root mean square error (RMSE) are given in absolute and relative terms

Variablea Unit Source of the error ME /% RMSEb /% (RMSE cropland; RMSE grassland)

C /g C kg–1 Laboratory 0.7 2 4.4c 12

Re-sampling (field) 0.4 2 4.4 28 (C: 1.5 - 14; G: 7.2 - 29)

Re-sampling (landscape unit) 0.4 2 0.4 2

Landscape unit homogeneityd – 1.0 5 6.1 30 (C: 3.7 - 29; G: 10.4 - 33)

BD /kg m–3 Re-sampling (field) – 8 1 218 16 (C: 249 - 18; G: 149 - 12)

Re-sampling (landscape unit) – 10 1 13 1

d /cm Re-sampling (field) 1.7 7 6.5 25 (C: 5.0 - 20; G: 6.6 - 31)

Re-sampling (landscape unit) 0.8 3 2.5 10

stock /t C ha–1 Re-sampling (field) 1.9 4 22.5 45 (C: 12.7 - 30; G: 33.7 - 54)

Re-sampling (landscape unit) 0.04 � 0 6.7 13

aC - SOC content; BD - bulk density; d - sampling depth; stock - SOC stock.
bDistinction between LSU under cropland (C) and grassland (G) is specified in the next column when relevant.
cOr 2.5 for the RMSE of samples with a SOC content ranging from 5 to 50 g C kg–1 which is the range of SOC content of the LSU monitored in this

study.
dAssumption that any locationbelonging to the same landscapeunitwill have the same characteristics (in SOCcontent in this case) (values are taken from

Table 4).
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the case for the sampling depth (MEd ¼ 1.7 cm) (Table 3). MEd

differed according to land use (3.4 cm for cropland and -1.5

cm for grassland). The re-sampling led to an overall RMSE at

the field scale of 4.4 g C kg–1 for the SOC concentration, of

218 kg m–3 for the BD, and of 6.5 cm for the sampling depth

(Table 3). Hardly any bias in the methodology of re-sampling

was found for the variables at the landscape scale (MEC ¼ 0.4

g C kg–1, MEBD ¼ – 10 kg m–3, and MEd ¼ 0.8 cm), while their

RMSE amounted to 2% of the SOC concentration (0.4 g C

kg–1), 1% of the BD (13 kg m–3), and 10% of the sampling

depth (2.5 cm) (Table 3).

Spatial prediction power of the SOC monitoring implemented

and SOC concentration heterogeneity within the landscape

units. The ME per LSU amounted to -1.0 g C kg–1 (5%),

reflecting a small bias between our database and POLLUSOL

(Figure 2a, Table 4). The spatial prediction power of the SOC

monitoring for individual locations (i.e. using the average

SOC concentration of the LSU monitored to predict the SOC

concentration of any soil profile belonging to the same LSU)

was less accurate as the ME amounted to -1.9 g C kg–1 (10%)

(with -1.8 g C kg–1 for soil profiles under cropland and -2.4 g

C kg–1 for those under grassland; Table 4 and figure 2b). The

RMSEP of each LSU (RMSEPLSU) was on average 5.1 g C kg–1

(or 24%), while the RMSEP of individual location was higher

(5.9 g C kg–1 or 30%), with similar relative values for both

land uses (Table 4).

The comparison of the RMSEPLSU of each LSU with their

initially estimated standard deviations showed that the SOC

concentration heterogeneity within each LSU was slightly

underestimated on average (Table 4). The relative validated

homogeneity of each LSU amounted to 30% on average and

was similar for both land uses (29% for LSU under cropland

and 33% for LSU under grassland ; Tables 3 and 4).

Uncertainties in the SOC stocks

Magnitude. Both the d and the Monte Carlo simulation (MC)

methods used to quantify the uncertainties in SOC stock

(sstock) gave similar results (r2 ¼ 0.78) (Table 2, Figure 3), with

a tendency of the d method to overestimate sstock of MC by

about 17% (Figure 3a). sstock ranged from 2.5 to 5.2 t C ha–1 at

the sample scale (CV from 4 to 12%), from 3.2 to 11.0 t C ha–1

at the microsite scale (CV from 8 to 17%), from 4.8 to 18.3 t C

ha–1 at the field scale (CV from 11 to 26%), and from 5.6 to

25.0 t C ha–1 at the landscape scale (CV from 15 to 35%)

(Table 2). At the landscape scale, the d method overestimated

the observed sstock by 6%, while the MC method under-

estimated sstock by 4% (Figure 3b).

The re-sampling of locations by another surveyor led to a small

bias in the SOC stock at the field scale (ME of 1.9 t C ha–1,

Table 3). However, the ME differed between each land use (6.7

t C ha–1 - 15% for cropland, and -6.7 t C ha–1 - 11% for grass-

land, results not shown), due to the corresponding bias on the

sampling depth (positive for cropland and negative for grass-

land). At the landscape scale, no bias was found in the SOC

stock (ME of 0.04 t C ha–1, Table 3). Given the variability of

the SOC stock within each LSU, the difference in SOC stock

between both surveyors at the landscape scale was significant

for unit 4 (cropland), while no significant difference was found

for unit 5 (grassland) (results not shown). The RMSE of the re-

sampling at the field scale was 22.5 t C ha–1 (45%) in total (with

12.7 t C ha–1 - 30% for cropland, and 33.7 t C ha–1 - 54% for

grassland), while it amounted to 6.7 t C ha–1 (13%) at the land-

scape scale (Table 3). When using equivalent masses to compare

both surveys, the RMSE at the field scale was reduced by 50%

(11.4 instead of 22.5 t C ha–1) especially for fields of unit 4 (61%

of reduction), while a reduction of 21% was reached at the

landscape scale (1.4 instead of 6.7 t C ha–1) (results not shown).

Sources. The sources of uncertainty in the SOC stock propa-

gated from different variables can be plotted for each scale and
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Figure 2 Comparison between the soil organic carbon (SOC) content

predicted by the landscape units (LSU) defined in Goidts & van

Wesemael (2007) and observed in an independent dataset ‘‘POLLU-

SOL’’ (Bock et al., 2003) at (a) the landscape scale (mean SOC con-

tent of each LSU in both databases) and at (b) the soil profile level

(SOC content predicted by the LSU for each available soil profile in

POLLUSOL).
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land use considered, and according to the presence of rock frag-

ments in the LSU (Figure 4). For non-stony LSU (Figure 4a),

the main source of uncertainty in the SOC stock was the SOC

concentration (representing on average 47% of the total SOC

stock variability). However, at the field scale, the uncertainty

that had the highest influence was the variability in the BD for

cropland (34%) and the variability in the first horizon thick-

ness for grassland (51%) (Figure 4a). For stony LSU, the main

sources of uncertainty in the SOC stock were more diverse

(Figure 4b). The variability in the SOC concentration and the

rock fragment content represented on average about the same

percentage of the total SOC stock variability across all scales

(18 and 20% respectively). The variability in the rock frag-

ment content had the highest influence on the SOC stock vari-

ability at the field scale for cropland (35%) and for grassland

(23%), and also at the sample scale for grassland (38%)

(Figure 4b). The variability in the SOC concentration was the

main source of SOC stock variability for stony cropland at the

sample (26%), microsite (16%) and landscape (23%) scales,

and for stony grassland only at the microsite scale (25%). The

variability in the first horizon thickness represented the main

source of uncertainty in the SOC stock for stony grassland at

the landscape scale (24%) (Figure 4b).

Covariances increasing the SOC stock variability were only

observed if rock fragments were present and were due to the

interactions between the first horizon thickness and the BD,

and between the SOC and the rock fragment content (Figure 4b).

For non-stony soils, covariances decreasing the SOC stock var-

iability were mainly due to the interactions between the SOC

concentration and the BD, and between the SOC concentration

and the first horizon thickness. For stony soils, interactions

between the SOC concentration and the BD, between the rock

fragment content and the first horizon thickness andbetween the

BD and the rock fragment content led to negative covariances

decreasing the SOC stock variability (results not shown). Neg-

ative covariances were larger than positive ones.

Table 4 Soil organic carbon (SOC) content in the first soil horizon of the landscape units (LSU) monitored (SOC2005) with their number of soil profiles

(n) and estimated standard deviation (S C LSU). The number of soil profiles available for validation in the POLLUSOL database is presented (ival)

together with the corresponding mean SOC content (SOCPOLLUSOL). The mean error between both surveys is shown (ME), as well as the root mean

square error of prediction (RMSEP) when using SOC2005 as a SOC reference for the soil profile in the corresponding LSU in POLLUSOL. The vali-

dated standard deviation of the LSU (S C LSU val) and its coefficient of variation (CV) are also given

Land use LSU n SOC2005 S C LSU ival SOCPOLLUSOL ME RMSEP S C LSU val
a CV

/g C kg–1 /g C kg–1 /g C kg–1 /% /g C kg–1 /% /g C kg–1 /%

Cropland unit 1 29 10.1 2.0 na / / / / / 2.0 20

unit 2 24 10.1 1.8 4 13.8 – 3.7 36 5.3 52 5.3 52

unit 3 38 10.7 2.8 3 11.0 – 0.3 3 1.4 13 2.8 26

unit 4 47 10.8 1.6 13 12.3 – 1.5 14 2.5 23 2.5 23

unit 10 21 9.9 3.6 7 12.3 – 2.4 24 2.9 29 3.6 36

unit 6 29 11.5 1.2 4 12.3 – 0.8 7 2.4 21 2.4 21

unit 7 43 11.4 2.5 2 11.5 – 0.1 1 0.5 4 2.5 22

unit 8 44 13.5 2.9 4 16.0 – 2.0 29 3.5 26 3.5 26

unit 14 23 29.0 6.6 3 31.7 – 2.7 9 7.1 24 7.1 24

Grassland unit 5 28 25.0 8.5 1 20.0 5.0 20 (D ¼ 5.0)b (41) 8.5 34

unit 9 9 25.5 7.6 1 27.0 – 1.5 6 (D ¼ 1.5)b (23) 7.6 30

unit 11 12 24.2 8.2 na / / / / / 8.2 34

unit 12 22 35.4 10.6 6 42.3 – 6.9 20 8.4 41 10.6 30

unit 13 26 35.4 13.6 3 36.7 – 1.3 4 15.3 16 15.3 43

unit 15 32 34.9 7.7 2 29.5 5.4 16 10.1 32 10.1 29
---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Mean croplandc 33 13.0 2.8 4 15.0 – 1.7 11 3.2 21 3.7 29

(Total croplandd) (298) (40) (– 1.8) (13) (3.5) (25)

Mean grasslandc 22 30.6 9.3 2 31.1 0.1 � 0 8.1 26 10.4 33

(Total grasslandd) (129) (13) (– 2.4) (7) (10.2) (28)
---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Mean per LSU 28 4 – 1.0 5 5.1 24 6.1 30

Total 427 53 – 1.9 10 5.9 30

aThe final validated standard deviation of each LSU corresponds to the maximum of both S C LSU and RMSEP.
bAs only one soil profile was available for validation, the absolute difference between the SOC predicted and the SOC observed (D) is presented
instead of the RMSEP.
cMean per LSU under the same land use.
dInvolving all the soil profiles under the same land use.
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The impact of the scale and the land use on the SOC stock

variability was also highlighted. The CV of the SOC stocks

increased from the sample scale (5 to 12%) to the landscape scale

(15 to 35%) (Table 2). This was especially true for LSU under

grassland (units 5 and 15) and under stony cropland (unit 14),

while therewas a small difference inCVacross the scales for non-

stony cropland (unit 4) probably due to the homogenisation of

the soil surface through agricultural practices (Table 2). The

land use also affected the CV of SOC stock which was higher

by 37% for LSU under grassland compared to LSU under crop-

land (results not shown).

Discussion

Method used to assess the uncertainties in the SOC stock

The methodology used to assess the uncertainties in the SOC

stock provided an estimate of the different sources of errors

involved in the SOC stock variability at different scales. Both

precision (s) and accuracy (ME) were estimated for several

scales and types of LSU. Furthermore, the interactions between

input variables (covariances) were taken into account in the

error propagation, allowing both the d method and the MC

simulations to give an integrated picture in contrast to ‘‘local’’

approaches, i.e. excluding interactions (Muleta & Nicklow,

2005; Post et al., 2008). However, at the field scale, only 2 repli-

cates per field in non-stony LSU were available for the assess-

ment of the precision on each input variable. Some caution is

therefore needed when interpreting the results obtained at that

scale. Covariances were only observed at the landscape scale

while they were indirectly estimated for the finer scales based on

the assumption of no scale-dependence of these correlations

within one LSU. However, this assumption should be tested

with a more adequate nested sampling scheme (Lark, 2005).
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details on the LSU).
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Figure 4 Sources of variability in the soil organic carbon (SOC)

stock of 4 landscape units (LSU) at different scales (sample, micro-

site, field and landscape). A distinction between non stony LSU (units

4 and 5) (a) and stony LSU (units 14 and 15) (b) is done. sC
2 , sBD

2 , sd
2

and sRM
2 represent individual relative contribution (%) to the total

SOC stock variance (sstock
2 ) of, respectively, the SOC content (C), the

bulk density (BD), the sampling depth (d) and the rock mass fragment

(RM), while covar are the contribution of covariances respectively

increasing (þ) or decreasing (-) sstock
2 (the variables involved in covar

are specified between brackets). The value of the SOC stock standard

deviation (sstock, / t C ha–1) is also given above each bar (values are

taken from Table 2).
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The confidence in the error propagation results was provided

by the cross-check of both deterministic and stochasticmethods,

and by the agreement of the SOC stock CV value across scales

with those reported by other studies (Wilding et al., 2000 and

Conant et al., 2003 at the microsite scale, Robertson et al.,

1993 and Morton et al., 2000 at the field scale, Kern, 1994,

Milne & Brown, 1997 and Sleutel et al., 2003 at the landscape

scale). However, there was a tendency of the d method to over-

estimate sstock by 17% compared to the MC simulations

(Table 2, Figure 3). This overestimation was proportional to

the decrease in the sample size available to assess sstock with the

d method (results not shown) and to the increase in the stan-

dard deviation itself (Figure 3a). This trend has been reported

by Jones (1989) with an overestimation of first order Taylor

series ranging between 1.8 and 16.9% compared to MC simu-

lations. Despite this overestimation, the d method is useful to

identify the contribution of each term of various types of

equations to the final variability observed on the result, pro-

vided that uncertainties in individual terms and interaction

can be estimated.

Main sources of uncertainty in the SOC stocks

As expected, the spatial variability had an important impact on

the SOC stock as shown by the increase of the SOC stock CV

across scales (from 5 to 35%, Table 2). This increase in the SOC

stock CV mainly corresponded to the increase in the SOC con-

centration CV (Table 2). Besides, both CVs had similar magni-

tudes (except for the field scale). This might permit using the

SOC concentration CV as a surrogate of the SOC stock CV in

cases where only SOC concentration data are available.

The main variables contributing to the SOC stock variability

differed according to the scale considered, the land use and the

stoniness. For non-stony soils, the SOC concentration variabi-

lity was the main origin of the uncertainties in SOC stocks,

except at the field scale (Figure 4a). This variability in the

SOC concentration was due to different factors according to

the land use. As the SOC concentration variability in cropland

(unit 4) does not strongly increase from the sample scale

onward (sample: 1.3 g C kg–1, microsite: 0.9 g C kg–1, field: 0.8

g C kg–1, landscape: 1.6 g C kg–1; Table 2 and Figure 4a), the

laboratory precision appears to be the main source of the SOC

concentration variability. A different situation prevails for

grassland (unit 5) as the SOC concentration variability increa-

ses strongly from the sample scale onward (sample: 1.1 g C kg–1,

microsite: 3.7 g C kg–1, field: 3.4 g C kg–1, landscape: 8.5 g C

kg–1; Table 2 and Figure 4a), which suggests that the spatial

variability has a higher impact than the laboratory precision.

At the field scale, the most important source of SOC stock

variability was the variability in the thickness of the first hori-

zon for grassland and the variability in the BD for cropland

(together with the variability in the plough layer depth)

(Figure 4a). This highlights the fact that a rigorous methodo-

logy for soil sampling (based on fixed and/or pedological hori-

zons depths) as well as several samples are needed to overcome

this variability from both the surveyor and the environment,

along with the use of equivalent masses for SOC stock com-

parison. As the CV of the BD did not vary very much across

scales (1 to 9%, Table 2), fewer samples for the BD than for

the SOC concentration will be needed to achieve a given level

of confidence, which is also reported by Don et al. (2007).

For stony soils, rock fragments were the main source of SOC

stock variability at the field scale for cropland and at the field

and sample scale for grassland, while the variability in the

SOC concentration predominated at the other scales (except

for grassland at the landscape scale where it was the thickness

of the first horizon). However, the influence of the rock frag-

ment content variability might be overestimated at the field

scale for cropland as a CV close to the one observed at the

landscape scale was initially assumed. This would suggest that

the SOC concentration variability is the main contributor to

the SOC stock variability for stony cropland, despite the pres-

ence of rock fragment content. The increase of this SOC con-

centration variability across scales suggests that the spatial

variability in the SOC concentration is the main source of

uncertainty to overcome for stony cropland (Table 2). For

stony grassland, the influence of the SOC concentration vari-

ability is only highlighted at the microsite scale, while the vari-

ability in the rock fragment content and the first horizon

thickness are predominant. Increasing the sampling density for

these variables is therefore greatly needed.

Accuracy and precision of the SOC stock monitoring

implemented

The re-sampling of locations by different surveyors was done

within a radius of less than 11 m on average due to available

information on the geographical coordinates, general topogra-

phy and detailed soil profile. This imprecision was smaller

than the one found in a similar study (about 15 m in England

and Wales, DEFRA, 2003) and should allow each location re-

sampled in the network tomeet the requirements of a SOCmon-

itoring site such as defined by Morvan et al. (2008) (i.e. to be

geo-referenced with a precision inferior to 10 metres and to

have undergone at least one survey with future planned sur-

veys on the same location).

No bias was observed between different surveys, except in the

sampling depth and particularly for cropland (ME of 3.4 cm –

12%). As croplands are ploughed, the thickness of the first

horizon changes through the year and is difficult to identify, even

though the average plough depth between both surveys was si-

milar (validated by questionnaires to the farmers) and the sam-

pling was only allowed on fields that had not recently been

ploughed. This bias in sampling depth might be due to the differ-

ent seasons inwhich the two surveys took place (February to June

for the first survey and August to October for the second), and

consequently led to a bias in the SOCstock of about 15%. Ideally,

sampling should therefore be carried out during the same season.
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These imprecisions from the re-sampling were reflected at the

field scale by a RMSE in each variable ranging from 12 to 31%

for one location (especially in the sampling depth for both types

of land use, followed by the BD for cropland and the SOC con-

centration for grassland, Table 3). The RMSE in the SOC stock

had a higher range (from 30 to 54%), except if equivalentmasses

were considered for comparison between surveys (range from 14

to 31%). Although the location re-sampled was within 11 m of

the original soil profile, the magnitude of the uncertainties were

quite high, showing that a high precision must be achieved to

detect small changes through time at one location. However, at

the landscape scale, the RMSE in each variable from an impre-

cise re-sampling ranged from 1 to 10% (with the highest RMSE

in the sampling depth), while an average RMSE of 13% was

achieved in the SOC stock (or of 3% using equivalent masses

for comparison). These uncertainties were more acceptable,

thanks to the number of locations taken into account at an

aggregated level (the LSU).

The error in the SOC concentration from the laboratory was

of the same order as the one from an imprecise re-sampling and

should therefore not be neglected, especially for soils with low

SOC concentration (Table 3). The negative bias in SOC concen-

tration between our database and POLLUSOL might be due to

the slightly different method to measure the total OC for the

latter and to the possible underestimation of the correction fac-

tor used by the laboratory (1.3) to rectify the incomplete OC

oxidation of the Walkley & Black method (Lettens et al., 2007).

TheaverageRMSEof theSOCmonitoring implementedwhen

predicting the SOC concentration through space using the LSU

approach was high (6.1 g C kg–1 - 30%, with a range from 20 to

52%, Table 4) but comparable to errors of prediction using

dynamic SOC stock modelling at the landscape unit scale (e.g.

a RMSE of 31% was found for soil types of Southern Illinois

with the CENTURY model, Yadav & Malanson, 2008, and

a RMSE of 61% for soil types of Northern Belgium with the

DNDC model, Sleutel et al., 2006). However, fewer data are

needed per stratum in our approach (about 28 locations per

LSU compared to an average of 348 locations or cells per soil

type in Sleutel et al., 2006). Increasing the level of stratification

might improve the prediction of the LSU monitored but would

also increase the amount of data needed.

Therefore, the impact of these uncertainties on our previous

regional assessment of the SOC stock change between 1955 and

2005 can be determined. As both sampling campaigns took place

throughout all the year, there should be no bias in the sampling

depth. Besides, equivalentmasseswere used for the SOC stock com-

parison, and the same methodology for laboratory SOC analyses

was used. However, an imprecise re-sampling of the locations may

haveoccurred.Therefore,assuming that this imprecision is similar to

theone found in this studybetween twodifferent surveyors, a similar

RMSE in the SOC stock at the landscape scale (1.4 t C ha–1) can be

assumed and compared to the SOC stock change observed in

Goidts & van Wesemael (2007) (i.e. an average change of -5.8 t C

ha–1 for LSU under cropland and 21.9 t C ha–1 for LSU under

grassland). This RMSE represents between 6 and 24% of the aver-

age SOC stock change detected (or between 31 and more than

100% if non-equivalent masses had been used for comparison).

Thepotentialof theSOCmonitoring implemented todetectSOC

stock changes through future re-sampling (i.e. theminimumdetect-

able difference in SOCstockallowed -MDD)canalso be estimated

based on the number of locations available and the standard devi-

ation of the SOC stock estimated in this study. As about 28 bench-

marked soil profiles per LSU are available in our design (paired

sampling), and based on theMDD formula fromZar (1999) (Note

5), theMDDrepresentsonaverage20%of the initialSOCstock (11

t C ha–1, Table 5). The time needed to detect such a change varies

according to the rates of SOC stock changes observed : from 63

years for ‘‘business-as-usual’’ rates of SOC stock changes

observed in our study area (Goidts & van Wesemael, 2007), to 11

years for higher rates of SOC stock changes (approximately 1 t C

ha–1 year–1 for improvement in agricultural practices, Freibauer

et al., 2004) (Table 5). This highlights the difficulty of detecting

SOC stock changes within the timescale of policymakers.

Practical considerations for a SOC stock monitoring

scheme

Improvements in SOC stock assessments depend on the scale of

interest and should mainly focus on the decrease of the SOC

concentration variability when a similar pedological context is

encountered. This can be achieved by using other techniques for

SOC analyses than the Walkley and Black method, such as C-N

analysers which can improve the precision by reaching an aver-

age CV lower than 3% (Bowman et al., 2002). Storing dry sam-

ples is highly recommended to avoid any dependence of the

technique chosen. Using composite samples decreases the spa-

tial variability (and cost) of SOC concentration at small scales,

which is especially needed for grassland. Increasing the sam-

pling density or the level of stratification (according to the

main driving factors of the SOC concentration) might also help

to reduce the SOC concentration spatial variability at larger

scales, but will induce higher costs of surveys. In order to

detect SOC changes over time, a precise re-sampling of the

locations is highly recommended (through benchmarked sites),

especially if the rates of SOC changes are small, such as the

rates observed in our study area between 1955 and 2005. Ideal-

ly, an additional sampling scheme allowing the quantification

of uncertainties should be implemented together with the moni-

toring scheme in order to properly use the results obtained.

Additional improvements can be made to reduce the variabi-

lity in the BD and the sampling depth. Using pedotransfer rela-

tionships instead of BDmeasurementsmay only be useful if they

are validated for the study area (which is rarely done). As collec-

ting BD in stony soils is challenging, using composite samples or

taking larger soil volumes can reduce the error. The sampling

depth can be fixed arbitrarily or according to soil horizons.

The latter allows consideration of homogeneous processes

(e.g. rhizosphere dynamics) and might lead to more consistent
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BDdata. Equivalentmasses should be used for comparison over

time to avoid important errors as shown by Ellert et al. (2002)

and this study (reduction of the error up to 21% at the land-

scape scale and to 50% at the field scale). This implies taking

samples down to a sufficient depth, because equivalent masses

might involve the consideration of greater depths.

The design chosen for the regional SOC stock monitoring in

southernBelgium ‘‘CARBOSOL’’wasbasedona stratified sam-

pling (each stratum corresponding to a landscape unit - LSU).

However, only the most representative strata were sampled. As

the total area is not covered, spatial modelling is still needed to

have a complete picture of the study area. Different approaches

can be used for the regionalization of the SOC stocks, either

empirical modelling (Zirlewagen et al., 2007; Meersmans et al.,

2008) or process-based modelling (Milne et al., 2007; Yadav &

Malanson, 2008), but additional uncertainties in the parame-

ters are then involved (Post et al., 2008).

Conclusions

The monitoring of soil organic carbon (SOC) stocks is challeng-

ing as it involves several variables subject to various sources of

errors. If these uncertainties are not reduced, they can be larger

than the SOC stock changes observed. This study provided an

overview of the sources and magnitude of uncertainties across

different scales in the SOC stock monitoring implemented in

southern Belgium, which can be indicative for other studies

focusing on SOC stocks. As the sources of uncertainties on the

SOC stocks varied according to the scale and the landscape unit

(LSU) considered, designs for SOC stock assessment should be

adapted accordingly.Recommendations are also given to reduce

the main sources of errors, i.e. from the SOC concentration

laboratory analyses (e.g. by using C-N analysers), from the

SOC concentration spatial variability (by using composite sam-

ples, benchmarked sites, high sampling density or stratified sam-

pling) and from the comparisonof non-equivalentmasses. These

recommendations will hopefully help to improve future SOC

stock assessment. With low rates of SOC change, the present

inventory configuration requires several decades to register a

significant difference, and high rates of change (e.g. 1 t C ha–1

year–1) would be needed to detect on the order of a 10-year

time horizon. Therefore, a more optimal design (reducing

uncertainties) would increase the detectability of SOC changes

(lower rates per year) at shorter time scales.

Table 5 Minimum detectable differences (MDD) in soil organic carbon (SOC) stock of the landscape units (LSU)monitored in CARBOSOL, and time

(t) needed to detect these MDD according to different rates of SOC change (r)a

MDDb tc

for r ¼ rb for r ¼ rþ

Land use LSU n /t C ha–1 /% /years /years

Cropland

unit 1 29 5.1 13 51 5

unit 2 24 15.5 38 155 15

unit 3 38 6.0 14 60 6

unit 4 47 4.2 11 42 4

unit 10 21 12.2 28 122 12

unit 6 29 5.8 14 58 6

unit 7 43 4.6 11 46 5

unit 8 44 6.4 15 64 6

unit 14 23 11.8 18 118 12

Grassland

unit 5 28 13.8 19 34 14

unit 9 9 21.2 37 53 21

unit 11 12 13.4 20 33 13

unit 12 22 13.9 18 35 14

unit 13 26 19.5 29 49 19

unit 15 32 12.7 20 32 13

Mean Cropland (Total) 33 (298) 7.9 18 79 8

Mean Grassland (Total) 22 (129) 15.7 24 39 16

aWith rb the rates of SOC change observed between 1955 and 2005 or ‘‘business as usual’’ (rb ¼ 0.1 t C ha–1 year–1 for cropland and rb ¼ 0.4 t C ha–1

year –1 for grassland, Goidts & van Wesemael, 2007); and with rþ the rates of SOC change following improvement in agricultural management (rþ
¼ 1 t C ha–1 year –1 on average for cropland and grassland, Freibauer et al., 2004).
bAssuming a re-sampling of the soil profiles of the LSU monitored (paired sampling).
ct ¼MDD / r.
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Notes

1 The accuracy refers to the difference between the true (or

reference) value and the estimated value, while the precision

refers to the agreement among repeated measurements.

2 From the northwest to the southeast of Wallonia, there is an

increase in precipitation (from 800 to 1200 mm) along with

elevation (from 180 to 690 m), a decrease of temperature (from

10 to 8°C), a shift from deep sandy loam and silty soils to shal-

low silt loam and stony soils, and a shift from intensive crop-

based agriculture to more extensive cattle breeding (for further

details, see Goidts & van Wesemael, 2007).

3 The term ‘‘rock fragments’’ refers to the particles 2 mm or

larger in diameter and includes all sizes that have horizontal

dimension less than the size of the pedon (Miller & Guthrie,

1984).

4 Note that sdRM ¼ – sd(1–RM), etc.

5 MDDpaired ¼
ffiffiffiffiffiffi
s2d
n

r
ðtað2Þ;n þ tbð1Þ;nÞwhere sd

2 is the variance

estimate of the difference in SOC stock between paired loca-

tions (assumed to equal s2stock as the difference is not yet

known), n is the number of locations in the LSU, t is the t-

statistic at a given significance level (a) and power (1 – b)
(using a ¼ 0.05 and b ¼ 0.1), considering a two-sided (2) test

with n the degree of freedom.
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