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ABSTRACT
Kutilek, M., 1980. Constant-rainfall infiltration. J. Hydrol., 45: 289—303.

An approximate solution of the infiltration equation for rain of constant intensity is
developed. From the theory, the ponding time and the development of the moisture profile
at time shorter than ponding time are determined. Using the theoretical background, simple
empirical and algebraic equations are derived for the calculation of the ponding time. The
solutions are compared with the results of the numerical analysis; good agreement has been
found. The solution of the infiltration for time greater than ponding time is obtained either
for ‘“delta function’ soil or for an empirical infiltration equation.

INTRODUCTION

The practical importance of studies on rain infiltration has been recognized
for a long time and numerical solutions have been developed to describe the
phenomena (Rubin and Steinhardt, 1963, 1964; Rubin, 1966). In addition,
Parlange (1972) published an approximate solution of the infiltration equation
with a constant flux at the surface, while Mein and Larson (1973), and
Swartzendruber (1974) discussed important features of the problem for
“delta function” soil. However, a detailed discussion comparing an approx-
imate analytical solution with the results of numerical analysis and with some
intuitive or empirical approaches is still lacking. Furthermore, some hydrolog-
ically important terms such as “ponding time’’ are often not exactly inter-
preted.

The present paper attempts to identify explicitly the important aspects of
the process, and develops an approximate analysis of constant-rate rain in-
filtration in a homogeneous soil.

APPROXIMATE ANALYTICAL SOLUTION
The basic equation describing one-dimensional infiltration can be written:

*The main part has been prepared during the author’s stay as Pye Fellow at CSIRO,
Division of Environmental Mechanics, Canberra, A.C.T., Australia.
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and can be solved for the initial condition:

t =0; 6 = 6;; z2>0 (2)

where 6 is the volumetric moisture content; t is time; 2 is the vertical co-
ordinate positive downward; D is the moisture diffusivity, D(8); k is the un-
saturated hydraulic conductivity, k(8), reaching kg at the saturation.

However, the boundary condition depends on the nature and duration of
the rainfall intensity vy, relative to v, the steady long-time infiltration rate in
a ponded soil with hydraulic head ¢, = 0. Two conditions are recognised:

(1) 0 < vy fve < 1. In this case the flow is described by a constant-flux
boundary condition, viz.:

t> 0, D(06/32) -k = —vy, z=190 (3)

and the surface water content 8, is time-dependent, approaching after great
period 8¢, depending on v, = k(800 — k(80i). The soil surface never ponds.
(2) vy/ve > 1. Two time intervals now become important:
(a) 0 < t < tp. During this interval, the rate at which the soil can accept
water exceeds v, and the soil surface remains unsaturated. The flow process
is described by condition (3).
(b) t > tp. At the ponding time £, the soil surface is effectively saturated
the rainfall rate exceeds then the rate at which the soil will accept water,
the excess runs off and infiltration can be described in terms of the constant
concentration boundary condition:

t > tp, 6 = 6, z2=0 (4)
If vy fue > =, the flow is characterized by the constant-concentration bound-
ary condition, viz.:
t > 0, 0 = 6, z2=20 (4a)
where 64 is the moisture content at saturation.

For the solution of the cases (1) and (2a), i.e. for the constant-rate infiltra-
tion, the concept of flux concentration relation (Philip, 1973) will be applied.

This approach improves substantially the Parlange’s (1971) original perturba-
tion method. The flux concentration relation, F (@), is defined by:

F(©) = (v-ki)/(vr —~ ki) (6)

where v is the flow rate, k; is the hydraulic conductivity at 8 = 6;, and the
relative moisture content:

© = (6 - 61)/(60—63)

Because 0, is time-dependent within the time interval 0 < ¢ < t,, F will also
be time-dependent, i.e. F(©,t). The further procedure follows the derivation
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of the solution of eq. 1 by Smiles (1978) for a similar problem of the constant-
flux filtration in a two-phase system of slurry.
Eq. 1 is the result of the combination of the flow equation:

v = —D(30/dz) +k (6)
and of the continuity equation:
36/t = —-dv/oz (7)

These equations are now to be treated separately. Introducing eq. 5 into eq. 6,
we obtain:

F(ve — ki)~ (k — ki) = —D(36/02) (8)
and the integration from z=0 yields:
NG D
= f d
s F(ur— ki) — (kR —kj)

(9)

see also equation (26) of Philip and Knight (1974). Then, integration of eq. 7
gives for v; = kj:

ve — ki)t = fﬁdz fo dz (10)
Substitution of eq. 9 into eq. 10 and integration leads to:
8o (1) 6 —6,)D
- (0 — 69) do (11)
o, F(vr — ki) — (kR —kj)

1

see also equation (14a) of Smiles (1978).

Note that eq. 9 corresponds with Parlange’s (1972) equation (8) with F = ©.
This F(®) relationship restricts principally the validity of the Parlange’s solu-
tion either to the “delta function” soil for all ¢, or to all soils for ¢t - « (Philip,
1973). However, in our problem with v, > kg, the condition of £ — < is not
applicable. On the other hand, Parlange’s (1972) equation (6) is the analogue
of our eq. 11, when we set F'=1, a condition not applicable to infiltration.

The problems of Parlange’s method of solution of constant-concentration
infiltration are discussed in detail in the paper of Knight and Philip (1974).

Therefore, we consider the derived solutions as more general ones, fitting
all soil models. If F(®) is chosen properly, the iteration procedure, originally
proposed for this type of solution by Philip and Knight (1974), appears to be
unnecessary at least for the majority of practical tasks where slight errors can
be neglected.
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Comparison with the numerical solutions

In order to check up the analytical solution, the results of Rubin’s (1966)
numerical procedure for infiltration from constant rain intensity in Rehovot
sand were compared with the results obtained from our solution. The gradual
increase of moisture content on the soil surface 6,(¢) was computed using
eq. 11, and the moisture profiles 6 (z) at t = 20 s and ¢t = 110 s, respectively,
were computed from eq. 9. In both egs. 9 and 11, the functional relationship
F(©) was simplified by the approximate expression F'=© which is valid
exactly for ‘“‘delta function” soil and to which the characteristics of the
Rehovot sand are assumed to be relatively close. For better understanding of
the importance of F(®), the relationship F = 1 (Parlange’s solution) was also
included. In the computation, Rubin’s (1966) analytical expressions of mois-
ture potential, ¥ (8); his equation (41), 2 (6); and his equation (42) were used.
Then the D(0) relationship was obtained from & (8) and from the derivative of
¥ (0) with respect to 9. The values of ¢, k and D corresponding to the series
of moisture contents 6 are arranged for the sake of convenience in Table I.
The constant intensity rain was taken at v, = 1.5k = 0.01995 cm s7".

The increase of the moisture content on the surface with time ¢ is plotted
in Fig. 1. It can be seen that there is a rapid change of moisture content close
to t = 0, while near to t = ¢, the change of 6, is very small. From this it fol-
lows that the experimental determination of ¢, at 6, = 65 will be very difficult.
Parlange’s procedure with F = 1 leads to higher values of 6, and consequently
to the underestimation of the ponding time tp.

In Fig. 2, the comparison between Rubin’s (1966) data and the computations
of the moisture profile 6 (z) according to eq. 9 is plotted for times ¢ = 20 s and
t = 110 s. For shorter periods, the choice of F does not play an important role
and there is a very good agreement between the results of Rubin’s numerical

TABLE I

Values of ¢y — moisture potential per unit weight; k — unsaturated conductivity; and D —
diffusivity, depending upon water content 6 for Rehovot sand of Rubin (1966)

0 v k D

(em® ecm™?) (cm) (ems™) (em? s7')
0.01 -2.82-10%2.95-107!2 3.12°10°°
0.05 -75 6.12-10°¢ 7.61-10°3
0.10 -43 6.39-10°° 2.06-1072
0.15 -32 1.65-10°* 2.45-1072
0.20 —-26 4181074 3.83:10
0.25 —-22 1.06-10°3 7.49-10°2
0.30 -19 2.69-107° 1.82:10!
0.35 -15 6.81-10°° 5.40-10!
0.38 -13 1.19-107? 1.12

0.387 -12 1.33-107? 1.33
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Fig.1. The increase of the moisture content on the surface with time 6,(¢) during the rain

infiltration according to eq. 11 for Rubin’s (1966) Rehovot sand with constant rain intensity
vy =1.5k;=0.01995 cm s™.
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Fig. 2. The moisture content profiles 6(2) during rain infiltration at time ¢t = 20sand ¢ =
110 s according to eq. 9 for Rubin’s (1966) Rehovot sand and for rain intensity v, =
0.01995 cm s, Full points correspond to Rubin’s data of numerical analysis.

procedure and the computed profile according to our solution, eq. 9 for F = 9,
while for Parlange’s F=1, a difference occurs. For longer periods, practically
close to the ponding time, the results are sensitive against the approximation
of F and it can be seen that a good agreement is obtained for F = ©, which
corresponds to the “‘delta function’ soil, while Parlange’s procedure for F =1
leads to a different moisture profile.
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In a similar way, the results of the numerical analysis of Haverkamp et al.
(1977) were used. In their model, saturated hydraulic conductivity of sand
was kg = 0.0944 cm s™! and the constant flux on the boundary was v, =
0.0038 cm s™! = 0.403 k. Moisture profiles computed according to eq. 9 are
compared with Haverkamp’s data in Fig. 3. A good agreement was found be-
tween both. Let us remind here that a relatively poorer agreement between
Parlange’s procedure and the results of the numerical analysis were demon-
strated in the paper of Haverkamp et al. The sensitivity of our solution upon
the approximate estimation of F(8) can be seen, but the differences between
the profiles for F = © and F = ©%8 are of low practical importance. Generally,
it can be concluded that the proposed analytical solution leads to a good
agreement with the results of numerical analysis, and that the approximate
estimation of F~ ©™ is suitable for practical tasks. However, a more detailed
study on the approximate expression for F(0) would be advantageous.

HOISTURE CONTENT, ®, cm®cm”

0.10 9.15 =20 , , 025

0+ ¢ * HAVERKAMP ET AL 1977

8

DEPTH , Z, cm

30 +

Fig. 3. The moisture content profiles 6(z) during rain infiltration at time ¢ = 0.05 hr. and

t = 0.2 hr. according to eq.9 for Haverkamp et al.’s (1977) sand and for v, = 0.0038 cm s .
Full points are Haverkamp et al.’s results of the numerical analysis.

PONDING TIME

Theory

The term ponding time tp denotes the time at which the rainfall rate ex-
ceeds the rate at which the soil surface can accept water so that water com-



295

mences to pond on the surface. Since ponding time cannot occur before 8,
reaches saturation, the condition for ¢ = ¢, is 0, = 5. Applying this to eq. 11,
neglecting gravity and if v, > kg, we obtain:

N N LA 12
el L (12)

The nth iterative estimate of sorptivity S, is [Philip and Knight, 1974,
equation (14)]:

O D 1/2

S, = [2[0 6 - 6;) s da] (13)
1

where F,, is the nth iterative estimate of F. If F is carefully chosen, the itera-

tion procedure can be neglected, i.e. F,, = F(®), and then:

= §2/242 (14)

It is useful to compare eq. 14 with the results of two intuitive procedures.
For this comparison, the equation of infiltration rate for the constant-concen-
tration boundary condition (4a) will be applied and index p can be used. If
gravitation is neglected for the sake of simplicity, then:

Up = %St_llz (15)

In the first alternative, the ponding time is identified with the time when
vp = vr. It follows from the eq. 15 that tpy = S?/40}.

In the second alternative, the ponding time is taken as equal to the time
when iy = i, where i designates the cumulative value either of the constant-
concentration infiltration (index p), or of the rain (index r):

tp

fpi
toi Ur =f vp dt (16)

0o

as demonstrated in Fig.4. Using eq. 15 we obtain tp; = S2/v?. The intuitively
derived values of ponding time t,, and {p; are in the following relation to
ponding time ¢, obtained by quasi-analytical solution, when gravitation is
neglected: £, = 2tpy = £pi/2.

It is obvious that the same result as in eq. 14 will be obtained if eq. 15 is
substituted in:

tPV
Urip =f vp dt (17)
0

where t,, = S?/4vZ, as derived earlier. The relation (17) will be utilized later
on. Therefore, the value of f;, can also be obtained graphically, using eq. 17,
as demonstrated in Fig.4. This procedure is applicable more generally to the
determination of the ponding time even from a rain of non-constant intensity.
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INFILTRATION RATE OR CUMULATIVE INFILTRATION

TiME

Fig. 4. Determination of ponding time ¢, from the graphs of infiltration with constant-
concentration boundary condition and from the graphs of rainfall. Graphs of both deter-
minations are plotted as rate vs. time and cumulative values vs. time.

The relation (17) has been extended to a general formulation of the depen-
dence of the rate of rain infiltration upon the cumulative infiltration by Mls
(1980).

When gravitation is considered, eq.11 will be used for ¢ = ¢, and 6, = 0
again, giving:

T (6 - 6;)D
e ki dy Pk - (e (18)

and the ¢, value will be shifted slightly nearer to the t,y value, as can be
seen in Fig.4.

Let us remind here that Parlange’s (1972) approximate equation leads
to:

9% (0 -6;)D 1
tp = dé 19
P fe Uy vr—k (19

If k; in eq. 18 is negligibly small, we find the identity of egs. 18 and 19 for
F=1. Since F < 1 with the exception of ® =1, the solution according to eq. 19
would lead to a systematically lower value of t,, when compared with eq. 18.
However, it is a common situation that D(#) and k(8) are not known and
the only information at hand is of infiltration with the constant-concentration
boundary condition, i.e. the result of the double ring infiltrometer test. The
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test is then evaluated usually according to one of the following equations:

vp = StTV2/2+ A (Philip, 1957) (20)
vp = C, 7 (Kostiakov, 1932) (21)
vp = Ct P+, (Mezencev, 1948) (22)
vp = (vF - v¥)t™P +u, (Dvotak and Holy, 1960) (23)
vp = ks(Yo— ¥e+Lg)/Le  (Green and Ampt, 1911) (24)

where A is a constant close to hydraulic conductivity kg; Cy, C,, a, § are
empirical constants with appropriate dimensions a« <1, §<1; v, is the infiltra-
tion rate at =1, the most appropriate unit is the minute; the asterisk denotes
the changed dimensions with regard to the empirical coefficient 8; ¥, is the
moisture potential at z =0, expressed per unit weight, i.e. [L], here ¢ ;= 0;
Yr is the moisture potential on the wetting front, numerically negative; and
Ly is the depth of the wetting front.

Combining eq. 20 with eq. 17, we obtain for v, = bA:

P A) 4b(b -1)?

The graphical interpretation of eq. 25 is shown in Fig. 5. It can be seen that
the decrease of the sorptivity causes a reduction of the ponding time of more
than the same order, e.g., if the change of the initial moisture content from
wilting point to field capacity causes the decrease of the sorptivity by roughly
half an order of magnitude, the ponding time will be reduced by more than

A

1 : o
i -
3+ e

[T ]]lul le]" ‘
1] .f: i

—7

sgnc heaans aedSRE R

Qo1 ar ! 10 100 1000 2000
PONDING TIME, tp
Fig.5. The dependence of the ponding time f, upon S/A ratio, where § is the sorptivity,

A the second term in Philip’s (1957) algebraic equation of infiltration for rain intensities
vr = bA, see eq. 25,
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half an order. The relationship between the ponding time and the rain intensity
is strongly non-linear, a great decrease of the rain intensity within the range of
high intensities causes a slight increase of the ponding time while in the range
of low intensities a small decrease of the intensity results in great increase of
the ponding time, just as follows from eq. 25.

Mezencev’s equation, in the form of eq. 23, gives with eq.17 for v, = av,
and v, = bv, the expression:

_[a-171# b-8
tp_[b—1] b(1-6) (26)

which is an equivalent of eq.25 for §=1/2, S=2(v, — v.), A=v.. An equation
similar to eq. 26 was intuitively proposed by Benetin (1970). Eq. 26 is also the
solution of Kostiakov’s equation (21) for v.=0.

For the sake of completeness, the solution of £, for eq. 24 (see Mein and
Larson, 1973) will also be included, giving for v, =bky:
tp - _ ve(0s — 64) 1 (27)

ke b(b-1)

The influence of the initial moisture content 6; upon the value of ¢;, for the
variation of v, can be read from the graph in Fig.6. It is demonstrated here
that the influence of the initial moisture content 6;, or, generally of (65 — 6;)
decreases with the decrease of the rain intensity and that the influence of 6;
will be reduced in sandy soils with high kg and low y ¢ values.
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Fig. 6. The ponding time t; as influenced by the initial moisture ¢; or by the moisture
complement (65 — 6;) and by the rain intensity v, = bkg according to eq. 27 derived for
‘““delta function” soil.



299
Comparison with the results of the numerical analysis

The solution of the ponding time ¢, according to eq. 26 is compared with
the results obtained by the numerical analysis of Smith (1972) and with the
corrected results obtained subsequently by Parlange and Smith (1976) for the

TABLE II

Comparison of ponding time ¢, determined numerically (Smith, 1972; Parlange and Smith,
1975) with the analytical solution according to eq. 26 and with the values of ¢, (eq. 28)
and ty; (eq. 29), see also Fig. 4

Smith’s data for Uy Numerically Analytically
infiltration if (cm/min.)
Uy = oo 1972 1975 eq.28 eq.26 eq.29
tp tp toy tp toi
(min.) (min.) (min.) (min.) (min.)
Poudre sand 0.212 35.0 26.62 39.41 119.69
Ve = 0.1397 em/min. 0.339 9.05 8.74 4.70 8.60 21.15
U,—Ve = 0.493 ecm/min.  0.423 5.2 5.09 2.58 5.01 11.59
g =0.585 0.508 3.52 3.36 1.65 3.33 7.40
0.635 2.13 2.07 0.99 2.08 4.46
0.762 1.45 1.39 0.67 1.44 3.02
0.931 0.93 0.88 0.44 0.98 2.00
Nickel gravelly 0.0847 13.07 17.13 8.78 17.13 39.26
sandy loam 0.127 573 7.17 3.42 7.17 15.30
Ue = 0.0267 cm/min. 0.1481 4.16 5.18 2.46 5.26 11.01
U, —Ue = 0.205 cm/min.  0.1693 3.14 3.87 1.87 4.05 8.35
g =10.581 0.1905 2.44 2.97 1.47 3.23 6.58
0.2117 1.94 2.32 1.19 2.64 5.33
Nibley silty clay 0.0635 33.41 30.12 16.53 31.72 71.09
loam 0.0868 17.42 16.48 7.98 16.02 34.33
Ve = 0.0167 cm/min. 0.127 7.83 6.92 3.53 7.35 15.17
v,—Ue = 0.222 em/min.  0.148 5.73 4.94 2.58 5.43 11.08
g = 0.555 0.169 4.33 3.80 1.97 4.19 8.48
0.191 3.39 3.02 1.55 3.31 6.65
0.212 2.78 1.26 2.71 5.42
Colby silt loam 0.0635 13.42 11.8 6.40 12.82 26.84
Ve = 0.0085 cm/min. 0.0847 7.58 6.85 3.49 7.12 14.62
U, —Ve = 0.149 cm/min.  0.1058 4.83 4.33 2.21 4.57 9.28
g =10.537 0.1270 3.32 2.92 1.53 3.19 6.43
0.1693 1.79 1.57 0.87 1.82 3.64
0.3175 0.59 0.483 0.26 0.55 1.08
Muren clay 0.0817 15,64 15.71 8.09 16.62 34.22
Ue = 0.0095 em/min. 0.1270 7.04 7.12 3.56 7.46 15.04
v, —U¢ = 0.234 em/min.  0.1481 5,21 5.25 2.62 5.54 11.10
g = 0.543 0.1693 4.02 4.06 2.02 4.28 8.54
0.1905 3.19 3.22 1.61 3.42 6.79

0.2138 2.61 2.54 1.28 2.74 5.43
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same entry values of soils and rain intensities. The data are presented in
Table II. In addition, this table contains the values of ¢,y and #; so that the
intuitive approaches can be compared with the relation (17) which was the
basis for obtaining eq. 26. Here again, ¢,y is the time of intersection of the
infiltration rate for boundary condition (4a) with the rain intensity, i.e. for
Up = vy by using eq. 23:

toy = [(@-1)/(b-1]" (28)

and tp; is the time of intersection of the cumulative infiltration for boundary
condition (4a) with the cumulative rain, i.e. for iy = i, from eq.23:

tpi = [(@-1)/{(b-1)(1-H)}1" (29)

where @ = v,/v¢, b = v /vc. It can be seen from Table 11, that the t, values
calculated according to eq.26 were very close to the numerically obtained ¢},
values of Smith (1972) and even closer to the ones of Parlange and Smith
(1975). As it follows from comparison, ¢, value is in between those of tpy and
tpi- However, the information on mutual relationships derived for negligible
gravity is not very exact.

INFILTRATION IN THE TIME INTERVAL ¢ > £,

For t > t;, we suppose that there is no water accumulation on the soil
surface, the runoff conducts all the excess water away and at z = 0 the condi-
tion ¥, = 0 is maintained. The flow is therefore characterized by the constant-
concentration condition on the boundary with the appropriate shift of the
t-axis.

For “delta function” soil, it follows from eq. 24 that:

t>t, i>ip i
k dt = —_— di (30)
’ ftp 'l[p = yi(0s — i)

Solving and re-arranging eq. 30, we obtain:
t* = if —In(1+if - ifp) (31)

where the asterisk denotes the dimensionless terms:

t* = —kgt/[(0s — 0;)¥¢]
if = i*—kg/vy, iy = i*ks/vy
and

* = —i/[(8s - 6i)¥r]

Eq.31 will be compared with the solution of eq. 24 for ponded infiltration
(i.e. for constant-concentration boundary condition) when Y, =0 for ¢ > 0:

t* = i* —In(1 + i*) (32)
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The condition for which eq.32 was derived can also be formulated as infiltra-
tion from the rain of intensity v, - o, when the non-infiltrated excess water
is removed by the instantaneous runoff. If in eq.31 v, = =, then eq.32 is ob-
tained.

The use of eq. 31 is difficult due to the implicit expression of the cumulative
infiltration. The eqgs. 20 and 23 will be thereafter further applied. If the infiltra-
tion rate from the rain at ¢ = t; equals the rate of infiltration with constant-
concentration boundary condition at t,y, we are allowed to assume that egs.
20 and 23 will remain valid provided that the time scale is shifted by (¢, — tpy).
The eq.23 can be transformed to:

—1\YB; p - -8
v = v+ (UF-ud) [t—(z_l) (b(l _ﬁﬁ)—l)] (33)
and eq. 20 to:
v = ls[p— _SZ——]_M + A (34)
? 4A2b(b-1)

Eq. 383 was used for Smith’s (1972) data and some of the evaluated curves of
the infiltration rate vs. time are plotted in Fig.7 as an example of a very close
agreement between the numerical analysis and the application of eq.33. The
rainfall infiltration can be estimated when the results of the simple field test
with double ring infiltrometer are known. These conclusions are valid for
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Fig. 7. Comparison of infiltration rate from rainfall according to Smith’s (1972) numerical
procedure and according to eq.33 when information on the ponded infiltration is given.
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homogeneous soils without existence of preferential ways, cracks and other
types of heterogeneity and irregularity in the porous system, see Kutilek and
Novak (1976), and Peschke and Kutilek (1976).

CONCLUSIONS

The quasi-analytical technique of solution of infiltration by Philip and
Knight (1974) was applied to infiltration with constant flux through the
boundary. This type of flow is the simplest one for rainfall infiltration and for
hydrology. The results of the analytical procedure were compared with
empirical approaches and with the numerical solutions of Rubin (1966),
Smith (1972), and Haverkamp et al. (1977).

Ponding time ¢, can be computed when the basic transport coefficients
D(0) and k(9) of the soil are known, see eq.18. Or, if the infiltration rate—
time relationship for infiltration with constant-concentration boundary condi-
tion is measured and the rain intensity v, is given, the ¢, value can simply be
determined according to the general eq.17 which is further elaborated in eq.
25, eq. 26, or eq. 27.

For the computation of the moisture profile when ¢ < ¢, eq.9 was found
as well fitting provided that the F (@) relationship is well approximated.

Having the information on the ponding time ¢y, the infiltration rate at
t > t, can be computed using a simply modified equation of infiltration with
constant-concentration boundary condition, see egs. 25 and 26.
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