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ABSTRACT
A new and relatively simple equation for the soil-water con-

tent-pressure head curve, 8(h), is described in this paper. The
particular form of the equation enables one to derive closed-
form analytical expressions for the relative hydraulic conducti-
vity, Kr, when substituted in the predictive conductivity models
of N.T. Burdine or Y. Mualem. The resulting expressions for
Kr(h) contain three independent parameters which may be
obtained by fitting the proposed soil-water retention model to
experimental data. Results obtained with the closed-form analy-
tical expressions based on the Mualem theory are compared with
observed hydraulic conductivity data for five soils with a wide
range of hydraulic properties. The unsaturated hydraulic con-
ductivity is predicted well in four out of five cases. It is found
that a reasonable description of the soil-water retention curve
at low water contents is important for an accurate prediction of
the unsaturated hydraulic conductivity.
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THE USE OF NUMERICAL MODELS for simulating fluid
flow and mass transport in the unsaturated zone

has become increasingly popular the last few years.
Recent literature indeed demonstrates that much ef-
fort is put into the development of such models (Reeves
and Duguid, 1975; Segol, 1976; Vauclin et al., 1979).
Unfortunately, it appears that the ability to fully
characterize the simulated system has not kept pace
with the numerical and modeling expertise. Prob-
ably the single most important factor limiting the
successful application of unsaturated flow theory to
actual field problems is the lack of information re-
garding the parameters entering the governing transfer
equations. Reliable estimates of the unsaturated hy-
draulic conductivity are especially difficult to ob-
tain, partly because of its extensive variability in the
field, and partly because measuring this parameter is
time-consuming and expensive. Several investigators
have, for these reasons, used models for calculating
the unsaturated conductivity from the more easily
measured soil-water retention curve. Very popular
among these models has been the Millington-Quirk
method (Millington and Quirk, 1961), various forms
of which have been applied with some success in a
number of studies (cf. Jackson et al., 1965; Jackson,
1972; Green and Corey, 1971; Bruce, 1972). Un-
fortunately, this method has the disadvantage of pro-
ducing tabular results which, for example when ap-
plied to nonhomogeneous soils in multidimensional
unsaturated flow models, are quite tedious to use.

Closed-form analytical expressions for predicting
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the unsaturated hydraulic conductivity have also been
developed. For example, Brooks and Corey (1964)
and Jeppson (1974) each used an analytical expression
for the conductivity based on the Burdine theory
(Burdine, 1953). Brooks and Corey (1964, 1966) ob-
tained fairly accurate predictions with their equations,
even though a discontinuity is present in the slope
of both the soil-water retention curve and the unsatu-
rated hydraulic conductivity curve at some negative
value of the pressure head (this point is often re-
ferred to as the bubbling pressure). Such a discon-
tinuity sometimes prevents rapid convergence in nu-
merical saturated-unsaturated flow problems. It also
appears that predictions based on the Brooks and
Corey equations are somewhat less accurate than those
obtained with various forms of the (modified) Mill-
ington-Quirk method.

Recently Mualem (1976a) derived a new model for
predicting the hydraulic conductivity from knowledge
of the soil-water retention curve and the conductivity
at saturation. Mualem's derivation leads to a simple
integral formula for the unsaturated hydraulic con-
ductivity which enables one to derive closed-form
analytical expressions, provided suitable equations for
the soil-water retention curves are available. It is the
purpose of this paper to derive such expressions using
an equation for the soil-water retention curve which
is both continuous and has a continuous slope. The
resulting conductivity models generally contain three
independent parameters which may be obtained by
matching the proposed soil-water retention curve to
experimental data. Results obtained with the closed-
form equations based on the Mualem theory will be
compared with observed data for a few soils having
widely varying hydraulic properties.

THEORETICAL
Equations Based on Mualem's Model

The following equation was derived by Mualem (1976a) for
predicting the relative hydraulic conductivity (Kr) from knowl-
edge of the soil-water retention curve

*—" [l]

where ft is the pressure head, given here as a function of the
dimensionless water content:

0 =
e -o,
6-0, ' [2]

In this equation, s and r indicate saturated and residual values
of the soil-water content (6), respectively. To solve Eq. [1], an
expression relating the dimensionless water content to the pres-
sure head is needed. An attractive class of 0(/i)-functions,
adopted in this study, is given by the following general equa-

0

={w_r [3]

where a, n, and m are as yet undetermined parameters. To
simplify notation later, ft in Eq. [3] is assumed to be positive.
Equation [3] with m=l has been successfully used in many
studies to describe soil-water retention data (Ahuja and Swart-
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zendraber, 1972; Endelman et al., 1974; Haverkamp et al., 1977).
A typical ah curve based on Eq. [2] and [3] is shown in
Figure 1. Note that a nearly symmetrical "S"-shaped curve is
obtained, and that the slope (de/dh) becomes zero when 0 ap-
proaches both its saturated and residual values.

Simple, closed-form expressions for Kr(Q) can be derived
when certain restrictions are imposed upon the values of m and
n in Eq. [3]. Solving this equation for h=h(&) and substituting
the resulting expression into Eq. [1] gives

where

IT** dx.

Substitution of x=ym into Eq. [5] leads to

*01/1B „
'0 yf(0) =

[4]

[5]

[6]

Equation [6] represents a particular form of the Incomplete
Beta-function and, in its most general case, no closed-form
expression can be derived. However, it is easily shown that for
all integer values of A=m—1+1/n the integration can be car-
ried out without difficulties. For the particular case when k=0
(i.e., m=l—1/n) integration of Eq. [6] yields

[7]

' J ' (0 < m < 1)
The relative hydraulic conductivity can also be expressed in
terms of the pressure head by substituting Eq. [3] into Eq. [8],

and because /(I) = 1, Eq. [4] becomes

i.e.,

Kr(h) = (m=l-l/n) [9]

From the hydraulic conductivity and the soil-water retention
curve one may also derive an expression for the soil-water dif-
fusivity, which is defined as

[10]

This leads to the following equation for D(0):

+ -2]

where K, (= K/Kr) is the hydraulic conductivity at saturation.
The soil-hydraulic properties derived above were obtained by

assuming that k=m— 1+1 /n=0 in Eq. [6]. One can also derive
closed-form expressions for other integer values of k. For k=l,
for example, the conductivity becomes

Kr(&) =

(m=2-l/n) [12]
While this particular model is not only more complicated than
Eq. [8], it also represents only a slight pertubation of the
earlier function. Hence, Eq. [12] does not present an attractive
alternative for Eq. [8], and will not be discussed further.

Equations Based on Burdine's Model
Similar results as above for the Mualem theory can also be

obtained when the Burdine theory is taken as a point of de-
parture. The equation given by Burdine (1953) is:

= 0» d*. [13]

The analysis proceeds in a similar way as before. Equation

[3] is invened to give h=h(B) and substitution of this expres-
sion into Eq. [13] yields:

,(0) = 0*
where

= r» f *>• T
Jo L'-^J dx. [15]

[16]

Again it is assumed that the exponent of y in Eq. [16] vanishes.
Hence m=l-2/n, and Eq. [16] reduces to

[17]

Substituting x-ym into Eq. [15] gives

f(0) = m

The relative hydraulic conductivity therefore becomes

or, in terms of the pressure head,

*X*) =

The soil-water diffusivity for this case is

[19]

[20]

GRAPHICAL INTERPRETATION AND
PARAMETER ESTIMATION

Equations [9] and [11], based on the Mualem
theory, are shown graphically in Fig. 2 and 3, respec-
tively, using the same values of «, n and m(=l— 1/n)
as in Fig. 1. As can be seen from Fig. 2, the relative
hydraulic conductivity starts out with a zero slope at
pressure head values near zero, but then falls off in-
creasingly rapid as h decreases. The soil-water dif-
fusivity, on the other hand, attains (as does the soil-
water retention curve) a fairly symmetrical "S"-shaped
curve. Note that D(0) becomes infinite when 6 equals
Os- Only at intermediate values of 6 (approximately
between 0.25 and 0.45 cms/cm3 in Fig. 3) does the
diffusivity acquire the often assumed exponential de-
pendency on the water content. Similar features of
the soil-water diffusivity were also obtained by Ahuja
and Swartzendruber (1972) and by Murali et al. (1979).

Equations [19] and [20], based on the Burdine
model, generate conductivity and diffusivity curves
which closely resemble those shown in Fig. 3 and 4.
Preliminary tests indicated that the Burdine-based
equations were, in most cases, in lesser agreement with
experimental data than the Mualem-based expressions.
Through an extensive series of comparisons, Mualem
(1976a) also concluded that predictions based on his
theory, i.e., based directly on Eq. [1] by means of
numerical approximations, were generally more ac-
curate than those based on various forms of the Bur-
dine theory (including the Millington-Quirk method).
Because of this, the Burdine-based equations will not
be considered further, and attention is focused only
on the Mualem-based expressions.

The soil-water content as a function of the pressure
head is given by Eq. [2] and [3], i.e., by
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-e, =0.10

a=0.005 (I/cm)
n =2.0
m=0.5

10°

.1 Z .3 .4 .5
WATER CONTENT, 0 (cm'/cm3)

Fig. 1—Typical plot of the soil-water retention curve based
on Eq. [§]. The point P on the curve is located halfway be-
tween er (=0.10) and S,(=0.50).

(0,-Or)

[1 + («*)«]
[21]

where, as before, it is understood that h is positive,
and where for the Mualem model

m — 1-1/n. [22]
Equation [21] contains four independent parameters
(Or, 6S, a, and n), which have to be estimated from ob-
served soil-water retention data. Of these four, the
saturated water content (Os) is probably always avail-
able as it is easily obtained experimentally. Also the
residual water content (0r) may be measured experi-
mentally, for example, by determining the water con-
tent on very dry soil. Unfortunately, 0r measurements
are not always made routinely, in which case they
have to be estimated by extrapolating available soil-
water retention data towards lower water contents.
The residual water content is defined here as the wa-

10'

1'°

K, = 100 (cm/day)

a = 0.005 (I/cm)

n = 2.0

0 .1 .2 .3 .4 .5 £
WATER CONTENT , 8 (cm'/cm3)

Fig. 3—Plot of the soil-water diffusivity vs. water content
as predicted from knowledge of the soil-water retention
curve shown in Fig. 1, and the hydraulic conductivity at
saturation.
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I06

o =0.005 (I/cm)
n=2.0

-10 -10 -10 -10
PRESSURE HEAD , h (cm)

-10

Fig. 2—Plot of the relative hydraulic conductivity vs. pressure
head as predicted from knowledge of the soil-water reten-
tion curve shown in Fig. 1.

ter content for which the gradient (dO/dh) becomes
zero (excluding the region near 0, which also has a
zero gradient). From a practical point of view it seems
sufficient to define Or as the water content at some
large negative value of the pressure head, e.g., at the
permanent wilting point (h=—15,000 cm). Even in
that case, however, significant decreases in h are likely
to result in further desorption of water, especially in
fine-textured soils. It seems that such further changes
in 0 are fairly unimportant for most practical field
problems. In fact, they would be inconsistent with
the general shape of the 0(/j)-curve defined by Eq.
[21 ] and probably invalidate the concept of a residual
soil-water content itself.

Assuming for the moment that Or is a well-defined
parameter and that sufficiently accurate estimates of
both 0r and 03 are available, then the following pro-
cedure can be used to obtain estimates of the remain-
ing parameters « and n.

Differentiation of Eq. [21] gives
dO _ -a m(0a-6r) / i f t i / m x "
dh ~ 1-m u ( " ' [23]

where the right-hand side is expressed in terms of 0,
rather than h. Solving Eq. [3] for « gives furthermore

1C?

S

I02

.1 .2 .3 .4 .5 -10° -I01 -I02 -10* 0 .1 2. 3 .4 .5
8(cm3/cm3) h (cm) 8 (cmVcm3)

Fig. 4—Comparison of the proposed soil hydraulic functions
(solid lines) with curves obtained by applying either the Mua-
lem theory (M; dashed lines) or the Burdine theory (B;
dashed-dotted lines) to the Brooks and Corey model of the
soil-water retention curve.
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„ = J- (©-l/m -l)i/». [24]

Substituting Eq. [24] into Eq. [23] results in

t\ h 1-—*w » '" L J

The right-hand side of this equation contains only the
unknown parameter m (both 03 and Or are assumed to
be known). Hence it is possible to obtain an estimate
of m by determining the product of the slope (dO/dh)
and the pressure head (h) at some point on the Q(h)-
curve. Soil-water retention data are often plotted on
a semilogarithmic scale. One may take advantage of
this fact by noting that

•Mfc-jfi = (In 10) h ̂ . [26]

Let S be the absolute value of the slope of 0 with re-
spect to log h, i.e.,

S = d©

or, equivalently,
d(log h)

S = -Or) d(log h) '

[27a]

[27b]
\ * ' / \ o /

Combining Eq. [25], [26], and [27b] leads to the
following expression for S

S = 2.303 -y^L- ©(I-©1/™). [28]

The best location on the 0(/z)-curve for evaluating the
slope S is about halfway between Or and 9S. Let P
be the point on the soil-water retention curve for
which 0=i/2 (see Fig. 1). From Eq. [2] and [24] it
follows that the coordinates of P are given by

hP = -

and Eq. [28] reduces to

= (0s+0r)/2

Sp(m) = 1.151 -j—- (1-2

[29a]

[29b]

[30]

The subscript P in these equations indicated evalua-
tion at P. Equation [30] may be used to obtain an
estimate for m once the slope SP is determined graphi-
cally from the experimental soil-water retention curve.
For this it is more convenient to express m as a func-
tion of Sp. The following empirical inversion formula
can be used for that purpose:

m —
- exp(-0.8 SP)
_ 0.5755 ^ 0.025

SP S? ~V~
[31]

As an illustrative example, let us apply the foregoing
procedure to the hypothetical "experimental" curve
in Fig. 1. The point P on this curve is located half-
way between Or and 0S (the residual water content is
assumed to be known). One may verify graphically

that the slope of the curve at P is about 0.34. From
Eq. [27b] it follows then that the dimensionless slope
Sp is about 0.85. Hence from Eq. [31] we have m >—
0.5, and from Eq. [22] n ̂  2.0. To obtain an estimate
for a in Eq. [9] and [11], it is further necessary to
have an estimate for hP. From Fig. 1 it follows that
log(fcp) r-' 2.55, and hence ftp ,-> 355. Finally, from
Eq. [29b] one obtains a ~ 0.005.

In some cases, no clearly defined or measured value
for the residual soil-water content will be available.
In that case Or must be estimated by extrapolating
measured soil-water retention data to the lower water
contents. One possible way for doing this is to apply
the graphical method discussed above using different
values for Or, and subsequently select that value of
Or which gives the best fit of Eq. [21] to the experi-
mental data. It must be clear that this procedure can
become quite elaborate when only a small portion
of the soil-water retention curve is measured. An al-
ternative approach would be to use a least-squares
curve-fitting technique, thereby allowing one to make
simultaneous estimates of Or, a, and n. An additional
advantage of this approach, actually used for this
study, is that now the entire measured curve can be
used in the parameter-estimation procedure. A de-
tailed description and listing of the nonlinear least-
squares curve-fitting program used for this purpose is
given by van Genuchten (1978).

COMPARISON WITH THE BROOKS AND
COREY MODEL

It is not the intent of this paper to give accuracy
comparisons between various closed-form analytical
conductivity expressions. Only a brief discussion of
the equations derived by Brooks and Corey (1964)
will be given here, since their model of the soil-water
retention curve represents a limiting case of the re-
tention model discussed in this study.

Brooks and Corey (1964, 1966) concluded from com-
parisons with a large number of experimental data
that the soil-water retention curve could be described
reasonably well with the following general equation

0 = (h/hb)- [32]
where h\, is the bubbling pressure and X a soil charac-
teristic parameter. Comparing Eq. [32] and [3],
one sees that Eq. [3] reduces to Eq. [32] for large
values of the pressure head, i.e.,

0 = (ah)~mn. [33]
For the Mualem theory one has m—\—\/n, and hence
\=n—1, while for the Burdine theory (m=l—2/n)
one finds that X—n—2. The parameter «, further-
more, is inversely related to the bubbling pressure, hb.
Brooks and Corey used the Burdine theory to predict
the relative hydraulic conductivity and the soil-water
diffusivity. They derived the following expressions

Kr(@) = 03+2/x

Kr(h) = («,

Z>(0) =
aX(0,-6r)

[34a]
[34b]

[35]

Through substitution of Eq. [32] into [1], similar
equations can be derived for the Mualem theory:
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Kr(&) = 05/2+2A

Kr(h) =

[36a]
[36b]

[37]

Figure 4 compares the different expressions given
above with the earlier obtained relations for the con-
ductivity and diffusivity (Eq. [3], [9], and [11]).
The parameters a and n are again the same as before
(a=0.005) and n=2), while A is equal to (n-1). The
soil-water retention curves for all three cases become
then identical for sufficiently low values of 0. Figure
4a shows that the Brooks and Corey model of the 0(h)-
curve approaches the curve based on Eq. [3] asympto-
tically when 0 decreases. However, large deviations
between the two models occur when 6 approaches
saturation. The curve based on Eq. [32] reaches 6S
at a much lower value of h (—200 cm) than the curve
based on Eq. [21]. The most important deviations
between the conductivity curves are also present at
or near the bubbling pressure (Fig. 4b). Differences
between the three curves at the lower -fiT-values are
relatively small and of no importance for most prac-
tical field situations. The diffusivity curves (Fig. 4c)
show their most important differences at both the in-
termediate and higher values of the water content.
Note that the diffusivity curves based on Eq. [32]
remain finite (Ds=50,000 cm2/day) when 8 approaches
6s, while the solid line (Eq. [10]) becomes infinite
at saturation. It is to be emphasized here that Fig.
4 was included only to demonstrate typical properties
of the various conductivity and diffusivity models,
and that the figure should not be viewed as an ac-
curacy evaluation of any one model.

COMPARISON WITH EXPERIMENTAL DATA
In this section, comparisons are given between ob-

served and calculated conductivity curves for five
soils. The observed data for each case, with the ex-
ception of the last one, were taken from the soils cata-
logue of Mualem (1976b). Table 1 summarizes some
of the soil-physical properties of the five soils. Esti-
mates of the parameters Or, a, and n are also included
in this table.

Results for Hygiene Sandstone (Brooks and Corey,

.35

.30

.20

.15

HYGIENE
SANDSTONE

^fitted

-I02

h(cm)

10°

K,

I b 4 -

predicted-

-10' -IOZ

h(cm)

1964) are shown in Fig. 5. This soil has a rather nar-
row pore-size distribution, causing the soil-water re-
tention curve to become very steep at around h=—125
cm. Table 1 shows that a relatively high value of 10.4
for n was obtained for this soil, a direct consequence
of the steep curve (n is an increasing function of the
slope SP). The value of a was found to be 0.079 (I/
cm), approximately the inverse of the pressure head
at which the retention curve becomes the steepest
(Fig. 5). This, of course, follows directly from Eq.
[29a] which, for values of m close to one (i.e., for n
large) reduces to hP = l/a. In that case hp becomes
identical to the bubbling pressure, h,,, used in the
Brooks and Corey equation (Eq. [32]). Figure 4
shows a nearly exact prediction of the relative hy-
draulic conductivity, with only some minor deviations
occurring at the higher conductivity values.

Results obtained for Touchet Silt Loam G.E.3
(Brooks and Corey, 1964), shown in Fig. 6, are very
similar to those of Hygiene Sandstone. The curves in
this case are also very steep (w=7.09, Table 1), and
again a good prediction of the relative hydraulic con-
ductivity is obtained.

Figure 7 presents results obtained for Silt Loam
G.E.3 (Reisenauer, 1963). Note that only a limited
portion of the soil-water retention curve was measured.
The calculated value of 0.131 for 6r (Table 1) hence
may not be very accurate. Yet it is the best-fit value
as "seen" by Eq. [21] when matched against the ex-
perimental data, and apparently still results in an ac-
curate prediction of the unsaturated hydraulic conduc-
tivity. The predicted curve in Fig. 7 was found to
change only slightly when 6r was forced to vary be-
tween 0.05 and 0.15. Note that the curves in Fig. 7
are less steep than for the previous two examples, re-
sulting in a much smaller value of n (Table 1).

The first three examples each showed excellent
agreement between observed and predicted conduc-
tivity curves. Predictions obtained for Beit Netofa
clay (Rawitz, 1965)3 were found to be less accurate
(Fig. 8). The higher conductivity values are seriously

"E. Rawitz. 1965. The influence of a number of environ-
mental factors on the availability of soil moisture to plants (in
Hebrew). Ph.D. thesis. Hebrew Univ., Rehovot, Israel.

.6

.5

.4

V
">£

U

S.2

TOUCHET SILT LOAM
G.E.3

,0°

10

10"

predicted -

Fig. 5—Observed (open circles) and calculated curves (solid
lines) of the soil hydraulic properties of Hygiene Sandstone.

-io -10 -io -to -io -id
h(ccn) h(cm)

Fig. 6—Observed (open circles) and calculated curves (solid
lines) of the soil hydraulic properties of Touchet Silt Loam
G. E. 3.
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.4

SILT LOAM G.E. 3

filled

10

K,

10*

I64

-10 -10
Mem)

-10 -10" -10
h(cm)

-10

Fig. 7—Observed (open circles) and calculated curves (solid
lines) of the soil hydraulic properties of Silt Loam G.E.3.

underpredicted, and also the general shape of the pre-
dicted curve is different from the observed one. It
seems that much of the poor predictions can be traced
back to the inability of Eq. [21] to match the experi-
mental soil-water retention data. For example, the
residual water content was estimated to be zero (Ta-
ble 1), a rather surprising result since clay soils have
generally higher 0r-values than coarser soils (the satu-
rated hydraulic conductivity of this soil is only 0.082
cm/day). Limited data at the lower water contents
also leaves some doubt about the accuracy of the fitted
0r-value. This case clearly demonstrates the importance
of having some independent procedure for estimating
the residual water content.

Results for Guelph Loam (Elrick and Bowman,
1964) are given in Fig. 9. This example represents a
case in which hysteresis is present in the soil-water re-
tention curve. The observed data of this example
were taken directly from the original study (Fig. 2
and 3 of Elrick and Bowman, 1964). For the wetting
branch a maximum ("saturated") value of 0.434 was
used for 6, being the highest measured value. Also
the wetting branch of the hydraulic conductivity curve
was matched to the highest value of Kr measured dur-
ing wetting (Fig. 9). The value of Or, furthermore, was
assumed to be the same for drying and wetting, and
was obtained from the drying branch of the curve.
Both the drying and wetting branches of the reten-
tion curve are adequately described by Eq. [21 ]. Note
that some hysteresis is predicted in the relative hy-
draulic conductivity. Although this is generally to
be expected when two different retention curves are
present, Eq. [8] also shows that different retention
curves may generate the same conductivity curve as
long as Qr, 0s, and n remain the same (« may be dif-
ferent).

Table 1—Soil-physical properties of the five example soils.
Soil name K,

• cm'/cm' — cm/day cm"1

Hygiene sandstone
Touchet Silt Loam G.E. 3
Silt Loam G.E. 3
Guelph Loam (drying)

(wetting)
Beit Netofa Clay

0.250
0.469
0.396
0.520
0.434
0.446

0.153
0.190
0.131
0.218
0.218
0.0

108.0
303.0

4.96
31.6
-

0.082

0.0079
0.0050
0.00423
0.0115
0.0200
0.00152

10.4
7.09
2.06
2.03
2.76
1.17

.6

.5

_.4

"§

1.3

.2

BEIT NETOFA
CLAY

fitted'

10

K,

16*

,6"
predicts

-10 -10'
h(cm)

-10 -10 -10*
h(cm)

-10

Fig. 8—Observed (open circles) and calculated curves (solid
lines) of the soil hydraulic properties of Beit Netofa clay.

10

K,

io2

16"

wetting

drying

predicted

-10' .2 .3 .4
0 (cm'/cms)

.5

Fig. 9—Observed (circles) and calculated curves (solid lines) of
the soil hydraulic properties of Guelph Loam. The drying
and wetting branches of the relative hydraulic conductivity
curve were predicted from knowledge of the curve-fitted
branches of the soil-water retention curve.
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