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Abstract

The spatial scale of soil moisture measurements is often inconsistent with the scale at which soil moisture predictions are
needed. Consequently a change of scale (upscaling or downscaling) from the measurements to the predictions or model values
is needed. The measurement or model scale can be defined as a scale triplet, consisting of spacing, extent and support. ‘Spacing’
refers to the distance between samples; ‘extent’ refers to the overall coverage; and ‘support’ refers to the area integrated by each
sample. The statistical properties that appear in the data, the apparent variance and the apparent correlation length, are as a rule
different from their true values because of bias introduced by the measurement scale. In this paper, high-resolution soil moisture
data from the 10.5 ha Tarrawarra catchment in south-eastern Australia are analysed to assess this bias quantitatively. For each
survey up to 1536 data points in space are used. This allows a change of scale of two orders of magnitude. Apparent variances
and apparent correlation lengths are calculated in a resampling analysis. Apparent correlation lengths always increase with
increasing spacing, extent or support. The apparent variance increases with increasing extent, decreases with increasing
support, and does not change with spacing. All of these sources of bias are a function of theratio of measurement scale (in
terms of spacing, extent and support) and the scale of the natural variability (i.e. the true correlation length or process scale of
soil moisture). In a second step this paper examines whether the bias due to spacing, extent and support can be predicted by
standard geostatistical techniques of regularisation and variogram analysis. This is done because soil moisture patterns have
properties, such as connectivity, that violate the standard assumptions underlying these geostatistical techniques. Therefore, it is
necessary to test the robustness of these techniques by application to observed data. The comparison indicates that these
techniques are indeed applicable to organised soil moisture fields and that the bias is predicted equally well for organised and
random soil moisture patterns. A number of examples are given to demonstrate the implications of these results for hydrologic
modelling and sampling design.q 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

Soil moisture is a key variable in hydrologic
processes at the land surface. It has a major influence
on a wide spectrum of hydrological processes includ-
ing flooding, erosion, solute transport, and land–
atmosphere interactions (Georgakakos, 1996). Soil

moisture is highly variable in space and knowledge
of the characteristics of that variability is important
for understanding and predicting the above processes
at a range of scales.

There are two main sources of data for capturing
the spatial variability of soil moisture. These are
remote sensing data and field measurements. While
remote sensing data potentially give spatial patterns,
interpretation of the remotely sensed signal is often
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difficult. Specifically, there are a number of confound-
ing factors such as vegetation characteristics and soil
texture that may affect the remotely sensed signal
much more strongly than the actual soil moisture
(De Troch et al., 1996). Also, remote sensing signals
give some sort of average value over an area (which is
termed the footprint) and it is difficult to relate the soil
moisture variability at the scale of the footprint to
larger scale or smaller scale soil moisture variability
(Stewart et al., 1996). A further complication when
interpreting soil moisture patterns obtained from
microwave images is that the depth of penetration is
poorly defined and can vary over the image. This
means that the depth over which the soil moisture
has been integrated is unknown and may vary. An
alternative is to use field data. However, field data
are always point samples and, again, it is difficult to
relate the point values to areal averages. Also, field
data are often collected in small catchments, while
soil moisture predictions are needed in large catch-
ments; and the samples are often widely spaced
while, ideally, closely spaced samples are needed.

With both remote sensing and field data, these diffi-
culties arise because thescaleat which the data are
collected is different from the scale at which the
predictions are needed. In other words, the difficulty
is related to the need for a ‘‘change of scale’’ from the
measurements to the predictive model. This change of
scale has been discussed by Blo¨schl (1998) and
Beckie (1996), within the conceptual framework of
scaling. Upscaling refers to increasing the scale and
downscaling refers to decreasing the scale. Blo¨schl
(1998) noted that the variability apparent in the data
will be different from the true natural variability and

that the difference will be a function of the scale of the
measurements. Similarly, the variability apparent in
the parameters or state variables of a model will be
different from the true natural variability (and from
the variability in the data), and this difference will be a
function of the scale of the model.

Blöschl and Sivapalan (1995) suggested that both
the measurement scale and the modelling scale consist
of a scale triplet consisting of spacing, extent, and
support (Fig. 1). ‘Spacing’ refers to the distance
between samples or model elements; ‘extent’ refers
to the overall coverage; and ‘support’ refers to the
integration volume or area. All three components of
the scale triplet are needed to uniquely specify the
space dimensions of a measurement or a model. For
example, for a transect of TDR (time domain reflec-
tometry) soil moisture samples in a research catch-
ment, the scale triplet may have typical values of,
say, 10 m spacing (between the samples), 200 m
extent (i.e. the length of the transect), and 10 cm
support (the diameter of the region of influence of
the TDR measurement). Similarly, for a finite differ-
ence model of spatial hydrologic processes in the
same catchment, the scale triplet may have typical
values of, say 50 m spacing (between the model
nodes), 1000 m extent (i.e. the length of the
model domain), and 50 m support (the size of the
model elements or cells).

Blöschl and Sivapalan (1995) and Blo¨schl (1998)
noted that the effect of spacing, extent, and support
can be thought of as a filter and should always be
viewed as relative to the scale of the natural variabil-
ity. The scale of the natural variability is also termed
the ‘process scale’ and relates to whether the natural
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Fig. 1. Definition of the scale triplet (spacing, extent and support). This scale triplet can apply to samples (i.e. measurement scale) or to a model
(i.e. modelling scale). After Blo¨schl and Sivapalan (1995).



variability is small-scale variability or large-scale
variability. More technically, the correlation length
or the integral scale of a natural process (Journel
and Huijbregts, 1978) can quantify the scale of the
natural variability (the process scale). The correlation
length can be derived from the variogram or the
spatial covariance function of the data.

The variogram characterises spatial variance as a
function of the separation (lag) of the data points. The
main structural parameters of the variogram are the
sill and correlation length. The sill is the level at
which the variogram flattens out. If a sill exists, the
process is stationary and the sill can be thought of as
the variance of two distantly separated points. The
correlation length is a measure of the spatial continu-
ity of the variable of interest. For an exponential
variogram, the correlation length relates to the aver-
age distance of correlation. The spatial correlation
scale is sometimes characterised by the range instead

of the correlation length. The range is the maximum
distance of which spatial correlations are present.
While the correlation length and the range contain
very similar information, the numerical value of the
range is three times the correlation length for an expo-
nential variogram.

As mentioned previously, the spatial variability
apparent in the data will be different from the true
spatial variability. Here, we are interested in the
bias in the statistical properties of the true spatial
variability, estimated from the measured data. First,
the apparent variance in the data will, as a rule, be
biased as compared to the true variance, and this bias
is a function of theratio of measurement scale and
process scale. If the support of the measurement scale
is large as compared with the process scale (the true
correlation length), most of the variability will be
averaged out and the apparent variance will be smaller
than the true variance. This is consistent with the
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Fig. 2. Effect of the measurement scale (or modelling scale) on the apparent variance and the apparent integral scale. Schematic after Blo¨schl
(1998).



general observation that aggregation always removes
variance. However, if the extent is small as compared
to the process scale, the large-scale variance is not
sampled and the apparent variance will be smaller
than the true variance. The bias associated with extent
and support is depicted schematically in Fig. 2.
Second, the apparent correlation length (or apparent
integral scale) in the data will, as a rule, be biased as
compared with the true correlation length. Again, this
bias is a function of theratio of measurement scale
and process scale. It is clear that large-scale measure-
ments can only sample large-scale variability and
small-scale measurements can only sample small-
scale variability. As a consequence of this, large
measurement scales (in terms of spacing, extent and
support), compared to the process scale, will generally
lead to apparent correlation lengths that are larger
than the true correlation lengths, and small measure-
ment scales will cause an underestimation of the
correlation lengths (Fig. 2). The effect of the model-
ling scale (in terms of spacing, extent and support)
will be similar to that of the measurement scale.

While, conceptually, it is straightforward to assess
bias related to measurement scale, it may be difficult
to estimate it quantitatively. One approach is to use a
geostatistical framework (Journel and Huijbregts,
1978; Isaaks and Srivastava, 1989; Gelhar, 1993;
Vanmarcke, 1983;). In geostatistics, the spatial varia-
bility is represented by the variogram, which is the lag
dependent variance of the natural process. Based on
the variogram, there are a number of geostatistical
techniques available that allow quantitative estimates
of each bias mentioned earlier. For example, for
analysing the effect of support, regularisation techni-
ques are given in the literature. All of these techniques
hinge on the assumption of the variable under consid-
eration being a spatially correlatedrandomvariable.
However, for the case of soil moisture this is not
necessarily a valid assumption. There is substantial
evidence from measurements in the literature that
soil moisture is indeed spatially organised (Dunne et
al., 1975; Rodrı´guez-Iturbe et al., 1995; Georgakakos,
1996; Schmugge and Jackson, 1996; Western et al.,
1998a). For example, soil moisture is often
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Fig. 3. Location map of the Tarrawarra catchment near Melbourne, Australia. The two sampling plots are outlined.



topographically organised with connected bands of
high soil moisture in the depression zones of a catch-
ment and near the streams. Soil moisture may also be
organised as a consequence of landuse patterns, vege-
tation patterns, soil patterns, geology and other
controls.

This paper has two aims. The first is to examine
how the apparent spatial statistical properties of soil
moisture (variance and correlation length) change
with the measurement scale (in terms of spacing,
extent and support). The second is to examine whether
standard geostatistical techniques of regularisation
and variogram analysis are applicable to organised
soil moisture patterns. The main feature of this
paper is that we use soil moisture data collected in
the field with a very high spatial resolution. Real
spatial patterns are used because they often have char-
acteristics that do not conform to the assumptions
underlying the standard geostatistical approach, yet
standard geostatistics are often applied. Of greatest
significance here is the existence of connectivity and
nonstationarity. These characteristics introduce
uncertainty about the applicability of standard geo-
statistical tools for scaling spatial fields such as soil
moisture. Stationary random fields, which are often
assumed in geostatistics, do not have these character-
istics. Using real data allows assessment of the robust-
ness of the predictions of standard geostatistical
techniques to the presence of spatial organisation
(connectivity). We are not aware of any paper that
examines the effect of connectivity on scaling. The
data we use also allows consideration of a range of
scales of two orders of magnitude in the analysis.

2. Field description and data set

The data used to examine the spatial scaling of soil
moisture come from the 10.5 ha Tarrawarra

catchment. Tarrawarra is an undulating catchment
located on the outskirts of Melbourne, Australia
(Fig. 3). It has a temperate climate and the average
soil moisture is high during winter and low during
summer. Very detailed measurements of the spatial
patterns of soil moisture have been made in this catch-
ment. In this paper, data from four soil moisture
surveys (Table 1) are used. Two of these surveys
(S1 and S3) consist of measurements on a 10 by
20 m sampling grid. In one survey (S7), measure-
ments were made on the corners of a square with
side-length 2 m and the squares were centred on a
10 by 20 m grid. While the original data cover the
entire catchment only those data in a rectangle with
side-lengths 480× 160 m are used in this paper to
facilitate the resampling analysis (Fig. 3). The remain-
ing survey (fine) consists of measurements on a 2 by
2 m sampling grid in a 64× 96 m rectangle located
over the upstream portion of the eastern drainage line
(Fig. 3). Fig. 4 shows the soil moisture patterns of the
four surveys.

All measurements were made using time domain
reflectometry equipment mounted on an all terrain
vehicle. Each measurement represents a point
measurement of the moisture in the top 30 cm of the
soil profile. The soils at Tarrawarra have a 20–35 cm
deep A horizon, which is believed to be the hydrolo-
gically active zone from the perspective of lateral
subsurface flow. Perched water tables form in the A
horizon during winter months and the soil profile dries
to a depth of approximately 1 m during summer. The
Tarrawarra catchment is used for cattle grazing and
has pasture vegetation throughout the catchment. The
catchment and data collection methods are described
in detail by Western et al. (1997) and Western and
Grayson (1998).

The soil moisture surveys used in this paper cover
the range of soil moisture conditions typically
observed in this landscape. Table 1 gives the summary
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Table 1
Summary of the four soil moisture patterns from Tarrawarra used in this paper (full data set)

Survey Date Grid No. of points used Area (m2) Mean (%V/V) s2
true (%V/V)2 ltrue (m) Random/organised

S1 27 Sep. 95 10× 20 m 24× 16� 384 76800 38.6 18.3 28 O
S3 23 Feb. 96 10× 20 m 24× 16� 384 76800 21.1 4.7 14 R
S7 2 May 96 2× 2@10× 20 m 48× 32� 1536 76800 42.2 16.4 22 O
Fine 25 Oct. 96 2× 2 m 32× 48� 1536 6144 40.9 21.7 12 O
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Fig. 4. Measured volumetric soil moisture patterns at Tarrawarra on 27 Sep. 1995 (S1), 23 Feb. 1996 (S3), 2 May 1996 (S7) and 25 Oct. 1996
(fine), expressed as a percentage. Note that S1, S7 and ‘‘fine’’ exhibit spatial organisation while S3 is random.



statistics for the soil moisture data used here. The
coefficient of variation varies between 9 and 11%.
The soil moisture measurement error variance is 2.9
(%V/V)2. Measurement error accounts for less than
20% of the total variance in all cases, except for the
dry case (S3). In the dry case (S3), the error variance
is significant (62%); however, this case is of least
importance to our conclusions since it is the case
that most closely meets the underlying assumptions
of the geostatistical analyses applied (It is stationary
and it doesn’t exhibit connectivity). It is included for
completeness. Western et al. (1998a) discuss the
spatial organisation of soil moisture at Tarrawarra.
The measured soil moisture patterns do exhibit spatial
organisation the degree of which varies seasonally.
During wet periods there is a high degree of organisa-
tion. This organisation consists of connected band of
high soil moisture in the drainage lines and is due to
lateral redistribution of water by both surface and
subsurface flow paths. During dry periods there is
only a little spatial organisation and the spatial varia-
tion appears to be mainly random. Three of the
surveys used here are representative of organised
conditions (S1, S7, fine) and one is representative of
random conditions (S3).

3. Method of analysis

The analysis in this paper consists of three main
steps. The first step is an analysis of the full data
set, which gives the ‘‘true’’ variogram. The second

step is a resampling analysis in which the (empirical)
variance and integral scale are estimated. The third
step consists of estimating the (theoretical) variance
and integral scale directly from the ‘‘true’’ variogram.

In all three steps, an exponential variogram without
a nugget is used. Western et al. (1998b) found that the
soil moisture data at Tarrawarra are fitted well by
exponential variograms with a nugget; however,
here the nuggets are neglected. The reason for doing
this is that, in practice, there are often insufficient data
for inferring accurate nugget values and the nugget is
assumed to be zero. Also, this allows a more robust
estimation of the integral scale. A second assumption
is that of local stationarity, i.e. a sill exists for all
variograms irrespective of the scale considered. The
sill is assumed to be equal to the variance of the data at
that scale. Again, this is a pragmatic assumption often
made in practice, and it allows a more robust estima-
tion of the integral scale.

3.1. Analysis of the full data set

From the four data sets of soil moisture (Fig. 4),
empirical variograms were calculated. These are
shown in Fig. 5. It is clear from Fig. 5 that the surveys
on 27 September 1995 and 2 May 1996 (S1 and S7)
have variograms that are close to exponential and the
nuggets are small as compared to the sill. These are
the surveys where the soil moisture is topographically
organised (Table 1). The 23 February 1996 survey
(S3) has a relatively large nugget as compared with
the sill and the range is not well defined. This is the
survey where the spatial distribution of soil moisture
is random (Table 1). The 25 October 1996 survey
(fine) is clearly not stationary. This is because only
a part of the catchment has been sampled and the
maximum lag is not much larger than the range one
would expect when comparing this survey to S1 and
S7. Also, the variance of the 25 October 1996 survey
(fine) is large. This is caused by the location of the
sampled domain in an area of topographic conver-
gence. In this area there is significantly more topo-
graphic variability, compared with the average
topographic variability in the entire catchment. This
causes the large value of the soil moisture variance.

Exponential variograms (Eq. A1) were fitted to the
empirical variograms in Fig. 5. This fitting was
achieved by minimising the weighted root mean
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Fig. 5. True variograms of the four soil moisture patterns of Fig. 4.



square error over all the lag classes. The error for each
class was weighted by the number of pairs in that
class. However, the weighting did not significantly
affect the results of the fitting. The correlation length
ltrue was the only parameter optimised. The sill was
set to the sample variance and the nugget was
assumed to be zero. The fitted correlation lengths
ltrue are given in Table 1. These variograms are
referred to as ‘‘true’’ variograms in the remainder of
this paper. They are termed ‘‘true’’ because they are
based on the full data set, rather than on part of the
data set, which is the case for the variograms esti-
mated in the resampling analysis.

3.2. Resampling analysis

The aim of the resampling analysis is to emulate
hypothetical sampling scenarios (or model scenarios)

for which only a fraction of the full data set is avail-
able (Fig. 6). The hypothetical sampling scenarios
differ in terms of thescale of the samples. In the
framework used here, scale consists of a scale triplet
— spacing, extent, and support. Hence there are three
cases, each with a range of different measurement
scales, considered in the resampling analysis. For
each subsample the variance and correlation length
were calculated. The variance,s2

app, is simply calcu-
lated as the sample variance. The correlation length,
lapp, is calculated by fitting an exponential variogram,
gapp, (with zero nugget and sill equal to the variance)
to the empirical variogram of the subsample using the
same fitting technique as for the ‘‘true’’ variogram.

gapp� s2
app· 1 2 exp

2h
lapp

 ! !
�1�
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Fig. 6. Schematic of the resampling analysis.



Variance and correlation length estimated for the
subsamples are termed ‘‘apparent’’ variance and
‘‘apparent’’ correlation length, respectively. They
are termed ‘‘apparent’’ because they are the values
one would typically obtain in practical field studies
where the data points are available at a single scale
only. The apparent variance and correlation length
are, as a rule, different from the true variance and
correlation length and this reflects the bias introduced
by the measurement or the model. The apparent inte-
gral scale,Iapp, is equal to the apparent correlation
length as estimated from the apparent variogram
since the variogram is exponential with no nugget.

Iapp� lapp �2�
The results of the resampling analysis for the spacing,
extent, and support cases are summarised in Table 2.
In each case, a range of scales is considered by vary-
ing of one component of the scale triplet (Table 2).

In the case of spacing,n points are drawn randomly
from the true patterns. The variogram is estimated
from then point samples. Random sampling without
replacement then continues until allN point measure-
ments for that survey have been sampled. The vario-
gram is estimated each time. This results innreal,sp�

N/n realisations. The correlation length at a give scale
is estimated as the arithmetic average of thenreal,sp

realisations for that scale. Similarly, the variance at
a given scale is calculated as the arithmetic average of
the variances of thenreal,sprealisations. For survey S1,
for example, the scenarios start fromn � N � 384
points. This means that all the points of the array of
24 × 16 points are sampled and one variogram is
estimated. For the next scenario, half the number of
points (n � 192) is used, withnreal,sp� 2 variograms
being estimated and their parameters averaged, and so
forth until a minimum value ofn� 6 points. The scale
in terms of the spacing,aSpac, is defined as the average
spacing of the points:

aSpac�
�����
A=n
p �3�

whereA is the area of the domain as shown in Table 1.
In the case of extent, the first scenario uses all of the

points. In the next scenario, the domain is subdivided
into three contiguous regions and the data from each
region are considered to be one realisation. This
means that, for survey S1 for example, each of the
three realisations consists of an array of 8× 16 points.
From each of these three realisations, the variogram is
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Table 2
Resampling analysis for the cases of spacing, extent and support

Minimum-spacing Maximum-spacing
No. of points Spacing (m) No. of realisations No. of points Spacing (m) No. of realisations

S1 384 14.1 1 6 113 64
S3 384 14.1 1 6 113 64
S7 1536 7.1 1 6 113 256
fine 1536 2.0 1 6 32 256

Minimum-extent Maximum-extent
No. of points Extent (m) No. of realisations No. of points Extent (m) No. of realisations

S1 4 28.2 96 384 277 1
S3 4 28.2 96 384 277 1
S7 4 4.0 384 1536 277 1
fine 4 4.0 384 1536 78.4 1

Minimum-support Maximum-support
No. of points Support (m) No. of points aggregated No. of points Support (m) No. of points aggregated

S1 384 Small 1 6 113 64
S3 384 Small 1 6 113 64
S7 1536 Small 1 6 113 256
fine 1536 Small 1 6 32 256



estimated and the correlation length at that scale is
estimated as the arithmetic average of the correlation
lengths of the three realisations. In the next scenario,
the domain is subdivided into six contiguous regions
and so forth until a maximum value of 96 regions (for
S1). In the last scenario each region only contains 4
points (Table 2). The scale in terms of the extent,aExt,
is defined as the square root of the area of the region,
Aregion:

aExt �
��������
Aregion

q
�4�

Since the total areaA is fully tessellated into
regions, the number of regions (or realisations) is
nreal;ex� A=Aregion for each scenario. The variance at
a given scale is calculated analogously to the correla-
tion length as the arithmetic average of the variances
of the nreal;ex realisations.

In the case of support, the first scenario uses each
point individually. In the next scenario, two adjacent
points are aggregated (by arithmetic averaging) into
one mean value. This means that, for survey S1 for
example, the variogram is estimated from 192 aggre-
gated values that are on a 20× 20 m grid. In the next
scenario, four adjacent points are aggregated and so

forth until a minimum value of 6 aggregated values. In
the case of support there is no averaging of correlation
lengths or variances as in all scenarios there is only a
single realisation. The scale in terms of the support,
aSupp, is defined as the square root of the area over
which the samples are aggregated,Aaggreg:

aSupp�
��������
Aaggreg

q
�5�

Arithmetic averaging of point samples into aggre-
gated values is consistent with the conservation of
mass of soil moisture.

3.3. Estimating the (theoretical) variance and
integral scale directly from the ‘‘true’’ variogram

The rationale for calculating the variance and inte-
gral scale directly from the ‘‘true’’ variogram is to
examine whether standard geostatistical techniques
of regularisation and variogram analysis are applic-
able to the case of soil moisture patterns. This is done
because soil moisture patterns exhibit spatial organi-
sation that violates the spatially random behaviour
assumed by the standard geostatistical techniques.
The methods and equations used to calculate the
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Fig. 7. Results of the resampling analysis: apparent variance and the apparent correlation length (or integral scale) as a function of spacing,
extent and support. Diamonds: 27. Sep. 1995; disks: 23. Feb. 1996; squares: 2 May 1996; crosses: 25 Oct. 1996 (fine).



apparent variance,s2
app, and the apparent integral

scale,Iapp, for each of the cases of the scale triplet
support, extent and spacing are summarised in Appen-
dix A.

In the case of support, standard regularisation tech-
niques are used that calculate the variogram of an
averaged process using the variogram of the point
process and a filter function. The filter is represented
by a square of side lengthaSupp, which is the support.
The square is the area over which the aggregation
takes place. Different shapes of this area do not signif-
icantly affect the results of the regularisation (Rodrı´-
guez-Iturbe and Mejı´a, 1974). In the case of spacing,
the apparent variogram is approximated by the true
variogram for lags larger than the spacingaSpacand by
a linear increase from the origin for shorter lags. This
assumption is made because when estimating the
empirical variogram there are only a small number
of pairs of points for lags smaller than the spacing
(Russo and Jury, 1987) and a straight line is the
simplest approximation. However, this is a very
simple assumption, particularly for small lags, and it
may be worth examining the shape of the apparent
variogram more closely for the spacing case in future
studies. Discussions of related work are given in

Russo and Jury (1987) and Gelhar (1993). In the
case of extent, the apparent variogram is based on
the true variogram for small lags [forg h� � # s2

app],
and is constant and equal tos2

app for large lags. For the
extent case, nugget effects can be important for small
extents. Therefore, as an exception, the apparent
variances and integral scales are also derived for
exponential variograms with non-zero nuggets.

In the cases of spacing and extent, the apparent
variances,s2

app, can be given analytically, and the
apparent integral scales,Iapp, are derived from the
apparent variograms,gapp, by analytical integration:

Iapp�
Z∞

0
1 2

gapp�x�
s2

app
dx �6�

In the case of support, numerical integration is
required (Appendix A).

4. Results

Fig. 7 shows the results of the resampling analysis.
Measurement scales in terms of spacing, extent and
support have different effects on the apparent
variance. Spacing does not affect the apparent
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Fig. 8. As for Fig. 7; however, all scales have been normalised by the true correlation length,ltrue and the apparent variances have been
normalised by the true variances,s2

true.



variance. Increasing the extent causes an increase in
the apparent variance while increasing the support
causes a decrease in the apparent variance. On the
other hand increasing the scale in terms of spacing,
extent and support always increases the apparent
correlation length. These tendencies are similar for
all the four surveys analysed (Diamonds — 27
September 1995; disks — 23 February 1996; squares
— 2 May 1996; crosses — 25 October 1996, fine).
However, there is substantial scatter about these
general trends. Part of the scatter may be related to
the true variance and the true correlation lengths,
which are different for the four surveys. Therefore,
the information in Fig. 7 has been replotted in a
non-dimensional form. The non-dimensional relation-
ships are shown in Fig. 8. The apparent variance has

been normalised by the true variance, and the apparent
correlation length has been normalised by the true
correlation length. Similarly, the measurement scale
(in terms of spacing, extent and support) has been
normalised by the true correlation length. It is clear
that a significant portion of the scatter is removed by
the normalisation, particularly for the variance case
and to a lesser degree for the correlation length case.
The difference between the variance and correlation
length cases is related to the relative robustness of the
two statistical measures. Variance is a much more
robust statistical quantity than the correlation length
and hence is estimated more accurately in the
resampling analysis. The overall trend of the effect
of measurement scale on the apparent variance and
the apparent correlation length is similar to that in
Fig. 7 but now, the effects can be discussed more
quantitatively.

Spacing has no effect on the apparent variance but
does affect the apparent correlation length. Once the
spacing exceeds about twice the true correlation
length, the apparent correlation length will be biased
and the bias may be up to a factor of three, for the
conditions considered here. Extent may have a signif-
icant effect on both statistical quantities. As long as
the extent is larger than about 5 times the true correla-
tion length, the bias in both variance and correlation
length is small. However, if the extent is small, the
apparent variance may be as small as 20% of the true
value and the apparent correlation length may be as
small as 10% of the true value, for the conditions
considered here. Similarly, support may have a signif-
icant effect on both statistical quantities. As long as
the support is smaller than about 20% of the true
correlation length, the bias in both variance and corre-
lation length is small. However, if the support is large,
the apparent variance may be as small as 3% of the
true value and the apparent correlation length may be
as large as four times the true value, for the conditions
considered here. It is clear that all of these effects are
significant, with the effect of extent on the correlation
length and the effect of support on the variance being
the most important ones.

The following analysis examines whether the bias
due to sampling scale can be predicted by standard
geostatistical techniques of regularisation and vario-
gram analysis. These techniques assume stationary
random fields and our aim is to test the robustness
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Fig. 9. Effect of support: (a) Comparison of apparent variances
from the resampling analysis (markers) with apparent variances
predicted by Eq. A7 (line). (b) Comparison of apparent correlation
lengths from the resampling analysis (markers) with apparent inte-
gral scales predicted by Eq. A9 (line).



of these techniques to violations of these assumptions.
Here, these assumptions are violated by the presence
of connectivity and nonstationarity. The analysis
involves a comparison of the apparent variances2

app

from the resampling analysis with the apparent
variances2

app predicted by the geostatistical techni-
ques in appendix A. The analysis also involves a
comparison of the apparent correlation lengthlapp

from the resampling analysis (which is equal to the
apparent integral scale as an exponential variogram
with zero nugget is assumed) with the apparent inte-
gral scaleIapp predicted by the geostatistical techni-
ques in Appendix A.

Fig. 9(a) and (b) shows the comparison of the

resampling analysis with predicted bias for the case
of support. Fig. 9(a) indicates that the variances can be
predicted very well by standard regularisation techni-
ques. There is essentially no difference between the
random case (23 Feb.) and the other cases in terms of
the goodness of fit of the predictive relationship. The
predictions of the apparent correlation lengths [Fig.
9(a)]are also reasonably close to those estimated
from the resampling analysis. Part of the difference
between estimated and predicted correlation lengths
in Fig. 9(b) is due to the assumption of local statio-
narity in the resampling analysis. For example, corre-
lation lengths for 25 Oct. (fine) should increase once
the support exceeds the true correlation length. Failure
to do so is related to an underestimation of the true
correlation length of this survey (Table 1) associated
with the limited extent of the actual data sampled and
the assumption of stationarity of this survey (Fig. 5).
The random survey (Feb. 23) is slightly better
predicted than the organised surveys.

Fig. 10(a) and (b) shows the comparison of the
resampling analysis with predicted bias for the case
of extent. The predicted bias is shown for both zero
nugget and a normalised nugget ofs2

nug=s
2
true � 0:14.

This is the normalised nugget one obtains when fitting
an exponential variogram (with nugget) to the true
data set of the survey of 2 May 96 (S7) (Western et
al., 1998b). The normalised nuggets for the other
surveys are 0.12 (27 Sept. 95, S1), 0.64 (23 Feb. 96,
S3), and 0.29 (25 Oct.; fine). Fig. 10(a) indicates that
variances can be predicted quite well by standard
variogram analysis techniques. There is essentially
no difference between the random case (23 Feb.)
and the other cases in terms of the goodness of fit of
the predictive relationship. The main difference
between the surveys appears to be related to the
normalised nugget rather than to the effect of spatial
organisation. Indeed, the normalised apparent
variance in Fig. 10(a) should never drop below the
normalised nugget which can be quite large as in the
case of the 23 Feb. survey (s2

nug=s
2
true � 0:63). While

bias is significant for extents smaller than about 5
times the true correlation length, nugget only influ-
ences bias for extents smaller than the true correlation
length, for most of the surveys considered here (S1,
S7, fine). The predictions of the apparent integral
scale [Fig. 10(a)] are not as good as those of the
apparent variance. The integral scales for the random
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Fig. 10. Effect of extent: (a) Comparison of apparent variances from
the resampling analysis (markers) with apparent variances predicted
by Eqs. A10 and A19 (lines). (b) Comparison of apparent correla-
tion lengths from the resampling analysis (markers) with apparent
integral scales predicted by Eqs. A13 and A20 (lines). Solid lines
are for zero nuggets and dashed lines are for a normalised nugget of
s2

nug=s
2
true � 0.14.



case (23 Feb. 96; S3) are not well predicted at all and
this may be related to poorly defined variograms for
that date. Part of the poor fit may also be related to the
way the results of the resampling analysis have been
normalised in Fig. 10(b). Specifically, the extent has
been normalised by the ‘‘true’’ correlation length
found by fitting Eq. A1 to the full data set. Using
the correlation length for a non zero nugget variogram
(Eq. A17) for normalisation would have shifted the
curve for 23 Feb. 96 (S3) to the left. However, this has
not been done for consistency with the other cases.
This sort of resampling analysis inevitably involves
some degree of arbitrariness. It is also interesting to
note that nugget has only a minor effect on the appar-
ent correlation lengths and that there is no consistent
evidence that the presence of spatial organisation in
the soil moisture patterns affects the predictive power
of the standard variogram analysis techniques used
here.

Fig. 11 shows the comparison of the resampling
analysis with the predicted bias in the correlation
length for the case of spacing. The apparent correla-
tion lengths are always overestimated by the standard
regularisation techniques used here. This may be
caused by the approximation to the apparent vario-
gram chosen here (Eq. A15) where the apparent vario-
gram was assumed to be linear for short lags. In the
resampling analysis, the fitting of the variogram [Eq.
(1)] to the empirical variogram extrapolated more
accurately to shorter lags than a simple assumption

of linearity would predict. As a result of this, there
is less bias in the resampling analysis than in the
theoretical relationships given in the appendix.
However, it should be noted that these results depend
substantially on the method used for estimating the
correlation length in the resampling analysis. Here
theoretical (exponential) variograms were fitted to
the empirical variograms. There are a number of
other techniques available in the literature such as
non-parametric estimation of the correlation length
(or the integral scale). Non-parametric methods may
have substantially larger bias than those predicted in
Fig. 11 (Russo and Jury, 1987). It is also clear form
Fig. 11 that there is no significant difference between
the predictive power of the variogram analysis tech-
niques for organised and random surveys.

5. Discussion

The resampling analysis of the soil moisture data at
Tarrawarra indicates that bias in the variance and the
correlation length does exist as a consequence of the
measurement scale. The general shapes of curves
representing bias are as suggested by Blo¨schl
(1998). For the ideal case of very small spacings,
very large extents and very small supports, the appar-
ent variance and the apparent correlation length are
close to their true values. However, as the spacing
increases, the extent decreases or the support
increases, bias is introduced.

The exception is the effect of spacing on the appar-
ent variance. The apparent variance does not change
with spacing. This can be interpreted in the frequency
domain. Large spacings mean that the natural varia-
bility is resolved only at low frequencies and high
frequencies are not resolved. However, this does not
imply that the total spectral variance decreases as the
high frequencies are ‘‘folded back’’ to the lower
frequencies. This effect is termed ‘‘aliasing’’ in
sampling theory (Vanmarcke, 1983; Jenkins and
Watts, 1968). This is also consistent with sampling
effects as discussed for the time domain in hydrology
(Matalas, 1967). Spacing does have a significant
effect on apparent correlation lengths and, again,
this can be interpreted in the frequency domain.
Large spacings cause an overestimation of the corre-
lation length because the sampling only resolves the

A.W. Western, G. Blo¨schl / Journal of Hydrology 217 (1999) 203–224216

Fig. 11. Effect of spacing: Comparison of apparent correlation
lengths from the resampling analysis (markers) with apparent inte-
gral scales predicted by Eq. A16 (line).



low frequencies (large scales). This is discussed in
detail for the groundwater case in Gelhar (1993) and
for the soils case in Russo and Jury (1987). Russo and
Jury (1987) performed a resampling analysis similar
to the one performed here; however, they used synthe-
tically generated random fields (which don’t exhibit
connectivity), rather than real soil moisture patterns as
used in this paper. They used two different methods
for estimating the integral scale. The first method was
to fit theoretical variograms to empirical variograms
in a way very similar to the one used in this paper.
Using this method, they found a bias in the integral
scale such thatIapp;Spac=ltrue � 1:1 and 1.7 for normal-
ised spacings ofaSpac=ltrue � 3:1 and 4.4, respectively
(their Table 1). This is very close to the values found
in the resampling analysis of this paper (Fig. 11). The
second method was to find the integral scale by
numerical integration of the empirical variogram,
i.e. a non-parametric method. The second method
gave a much larger bias in the integral scale. For
normalised spacings ofaSpac=ltrue � 3:1 and 4.4,
Iapp;Spac=ltrue � 2:7 and 3.4, respectively. This is
larger than the values predicted by Eq. A16, as
shown in Fig. 11. Clearly, parametric methods are
more robust than non-parametric methods, provided
the shape of the variograms is known.

The effect of the decreasing extent was to decrease
apparent variance and to decrease apparent correla-
tion length. This can also be interpreted in the
frequency domain. Small extents mean that the
natural variability is sampled at high frequencies
only and the low frequencies are not sampled. As a
consequence of this, the total spectral variance is
lower and the integral scale is biased towards high
frequencies (small scales). The same interpretation
can be made from the variogram. The important
assumption in the extent case is that of stationarity.
Local stationarity and how this is related to global
variability has long puzzled hydrologists (Klemesˇ,
1974). There is a general observation that natural
variability increases with the scale (extent) of the
observation (Feder, 1988) and it is not straightforward
to reconcile this with the assumption of local statio-
narity. One interpretation has been given by Gelhar
(1986); Fig. 8, where he suggested that the global
variogram may consist of nested locally stationary
variograms. However, the interpretation made in this
paper is that local stationarity is useful as a working

hypothesis, even though it may not necessarily be
consistent with global behaviour. Another aspect of
the effect of extent is the quantitative effect on the
apparent correlation length. For the case of hydraulic
conductivity in aquifers, data given in Gelhar (1993);
Fig. 6.5, indicate that the apparent correlation length
is about 10% of the extent, and similar results were
found in Blöschl (1998) for the case of snow cover
patterns in an Alpine catchment in Austria. This is
actually quite consistent with the results for soil
moisture in this paper [Fig. 10(b)], at least for extents
smaller than 10× ltrue. However, it is not clear
whether this consistency is an indication of some
universal behaviour of hydrological processes or an
artefact of the sampling and the statistical analyses. It
should also be noted that the flattening out of the
relationships in Fig. 10(a) and (b) for extents larger
than 10× ltrue may be related to the limited extent of
the data used in this paper. It is likely that, as the scale
(extent) of the domain increases, both the soil moist-
ure variability and the scale of that variability (i.e. the
integral scale) would increase. This is because at
scales that are beyond the maximum scale examined
in this study (10 ha) one may expect that other sources
of variability come in. One potentially very important
source is different landuse types. Landuse is relatively
uniform at Tarrawarra. Other sources of variability are
differences in vegetation, soil type and geology.
1997a).

The effect of increasing support was to decrease
apparent variance and to increase correlation length.
Clearly, part of the variability is smoothed out when
real averages rather than point values, are considered.
It is interesting to note that the predictive relationships
(regularisation) used here both for the variance and
the correlation length were much closer to the results
of the resampling analysis than in the spacing and the
extent cases. This is partly due to the predictive rela-
tionships used in the spacing and the extent cases
being approximations. Part may also be due to the
averaging, where an increase in support increases
the robustness of the estimates in the resampling
analysis. A number of studies have examined the
change of apparent variance with changing support
for soil moisture estimates derived from remotely
sensed data. For example, Rodrı´guez-Iturbe et al.
(1995) analysed soil moisture data derived from
ESTAR measurements of the subhumid Little
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Washita watershed in south-west Oklahoma, USA
during the Washita ‘92 Experiment. They examined
the variance reduction observed as 200× 200 m pixels
were aggregated up to 1 by 1 km and concluded that
soil moisture exhibited power law behaviour with an
exponenta between 2 0.21 and 2 0.28 in the rela-
tionship:

s2
app;Supp� Aa

aggreg �7�
This is equivalent to an exponent of between20.42

and 20.56 in a relationship between apparent
variance and support,aSupp. This is equivalent to a
straight line in Fig. 9(a) with a slope of between
20.42 and20.56. Although the relationships found
here are not straight lines in Fig. 9(a), the section of
the plot from a support of about 0:3 × ltrue to about
3 × ltrue, can be approximated by a straight line with a
slope in the range of2 0.42 to 2 0.56. However, it
should be noted that Rodrı´guez-Iturbe et al. (1995)
examined only a very limited range of supports.
While the range of supports considered here is much
larger (two orders of magnitude), it is important to
note that the shapes of the relationships found here
are related to the shape of the true variogram (the
assumption of local stationarity). These shapes may
change if the variogram of soil moisture for larger
extents was markedly different.

From a practical hydrologic perspective the case of
changing support is probably the most important of
the three cases considered here. We will therefore
give two examples that illustrate the importance of
these scale effects from a modelling perspective.
These examples also demonstrate and how the results
of this scaling analysis might be used in modelling
applications. We will also give an example of the
importance of spacing for defining sampling
strategies.

5.1. Modelling

In hydrologic modelling, the following question is
often posed: given variance and correlation length at
one scale (support of the measurements) what is the
variance and correlation length at another scale
(support of the model). Consider the example of a
spatially distributed hydrologic model (such as
THALES, Grayson et al., 1995) for a small catchment.
The size of the model elements is 15 m and from

detailed point samples the true correlation length of
soil moisture is known to be 30 m.Question: (a) what
is the subgrid variability (i.e. the variability of soil
moisture within one model element); (b) what is the
variability of the average element soil moisture (i.e.
the variability between elements) as simulated by the
model assuming it is consistent with the true point
scale variability; and (c) what is the correlation length
of the patterns as simulated by the model.Solution:
For aSupp=ltrue � 0:5, Fig. 9(a) givess2

app;Supp �
0:8*s2

true. This means that the (normalised) variability
within an element is 1–0.8� 0.2 (Eq. A4. (a) The
subgrid variability is only 20% of the total variability
and (b) the variability between elements is 80% of
the total variability. (c) Fig. 9(b) suggest that
lapp;Supp� 1:3*ltrue � 40 m. In other words, the
change of scale considered in this example is not
very important in terms of the variance and the corre-
lation length. This sort of analysis would be useful for
helping to determine appropriate model element sizes.

Consider a second example of a macroscale model
(see, e.g. Sivapalan and Blo¨schl, 1995) that predicts
the soil moisture state in a large region. Specifically,
the purpose of the model is to predict the percentage
of the land surface that is saturated at a given time.
Assume that, at a given time, the true variance of soil
moisture iss2

true � 24�%V=V�2, mean soil moisture is
38�%V=V� and saturation occurs at a soil moisture
threshold of 45�%V=V�. Assume also that the true
correlation length of soil moisture isltrue � 50m,
and the model element size is 150 m.Question: (a)
what is the true percent saturated area and (b) what
percent saturated area will the model predict.Solu-
tion: (a) For the true soil moisture distribution, the
threshold is�452 38�= ���

24
p � 1.4 times the standard

deviation above the mean. For a standard normal
distribution, the exceedance probability is
P�Z . 1:4� � 0:08. This means that 8% of the land
surface is saturated. (b) The model will predict a
variance that is smaller than the true variance. For
aSupp=ltrue � 3, Fig. 9(a) gives s2

app;Supp �
0:25*s2

true � 6�%V=V�2. For the simulated soil moist-
ure distribution, the threshold is�452 38�= ��

6
p � 2.9

times the standard deviation above the mean. For a
standard normal distribution, the exceedance prob-
ability is P�Z . 2:9� � 0:002. This means that the
model predicts that only 0.2% of the land surface is
saturated. In this example the effect of support is
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clearly very important and neglecting this effect can
result in gross misinterpretations of data and model
results. While these estimates of the saturated area
depend on the details of the assumed statistical distri-
bution, the difference in standard deviation suggests
that significant scale related differences between esti-
mated saturated area would exist irrespective of the
actual statistical distribution. A normal distribution
has been assumed above to demonstrate the utility
of the scaling relationships. While this is approxi-
mately consistent with the observations at Tarrawarra
(Western et al., 1998b), further information is
required on the shape of the soil moisture probability
distribution function and how this varies with catch-
ment wetness, before this approach could be applied
generally. It is also important to recognise that this
averaging effect can have a significant effect on
evapotranspiration, both for the saturated areas and
the parts of the landscape that are below saturation.
This is because evapotranspiration — soil moisture
relationships are typically non-linear. Hence, evapo-
transpiration calculated from averaged soil moisture
may be different from the results of first calculating
evapotranspiration at the point scale and then
averaging it in a second step. These differences are
likely to be closely related to the variance of the
underlying soil moisture distribution as well as the
ratio of the support and the true correlation length of
soil moisture.

5.2. Sampling

In hydrologic sampling or measurement a question
often posed (at least implicitly) is the following: what
spacing, extent and support are needed to insure that
the measured soil moisture data will have a minimum
bias in terms of their variance and correlation length?
If we allow a 10% bias, Figs. 9–11 give the maximum
support, the minimum extent and the maximum

spacing as summarised in Table 3. This means that,
provided the true correlation length is knowna priori,
a total of (13/1.5)2� 75 sample points will be needed
if the bias is to be lower than 10%. In practical cases
the true correlation length will not be knowna priori
and the number of samples needed may be much
larger. In many practical cases it may not be possible
to arbitrarily choose the measurement scale due to
logistical and other constraints. For these cases, an
important question that is closely related to the
above one may be: given the apparent variance and
correlation length from the data what is the true under-
lying variance and correlation length? Consider the
example of a 7 km2 catchment in which 69 point
samples have been taken. From these samples, a prac-
tical range of 300 m has been estimated which is
consistent with an apparent correlation length of
about 100 m.Question: (a) is this estimate biased
and (b) if so, how many samples would be needed
for an unbiased estimate.Solution: The solution is
found by trial and error from Fig. 11. Eq. (3) gives
aSpac� 320 m. If we assume that the true correlation
length is 65m,aSpac=ltrue � 4.9, Fig. 11 gives
lapp;Spac=ltrue� 1.55 when using the results for survey
S3 (23 Feb 96) which is a solution to the above
problem. This means that the data should have been
collected at a scale of 1.5× 65 m� 100 m (Table 3) to
minimise the bias caused by the spacing. Therefore, a
total of 700 samples will be necessary for the 7 km2

catchment of the example assumed here. It is interest-
ing to note that the predictive relationship in Fig. 11
(Eq. A16 does not give a solution to the example
assumed here. In essence this is related to the fact
that it is difficult to infer information at scales much
smaller than those of the actual data.

When designing a field experiment to measure the
spatial variance and correlation length, it is necessary
to determine the spacing, support and extent at which
the measurements will be made. Ideally the support
should be small, the spacing small and the extent
large, compared with the true correlation length. In
practice the support is usually determined by the
measurement technique and is chosen by default
when the measurement technique is chosen. Usually
in field studies, the support is much smaller than the
correlation length, with the exception being cases
where the catchment is used as an instrument (i.e. in
runoff studies).
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Table 3
Measurement scales, as a function of the true correlation length,
ltrue, required for a bias smaller than 10%. Compiled from Figs. 9–
11 as predicted by the relationships given in Appendix A

Bias , 10% Spacing Extent Support

Fors2
app — . 6*ltrue , 0.3 *ltrue

For lapp , 1.5*ltrue . 13*ltrue , 0.3*ltrue



This leaves the spacing and extent to be deter-
mined. The possible combinations of spacing and
extent are likely to be limited by the resources avail-
able. However, there are some important limits. The
spacing should not exceed 1.5× l true. If a spacing
greater than about 1.5× l true is used there will be
insufficient resolution in the data to define the true
correlation length (it is not possible to obtainl true

from lapp,spacusing the predictive relationship in Fig.
11 if the spacing is too large). It should be noted that a
finer spacing might be required if the aim is to resolve
organised features, such as connectivity, in the spatial
field. Fig. 10 indicates that the extent needs to be quite
large compared to the correlation length (at least 13×
l true for a bias less than 10%). To apply the predictive
relationships in Figs. 9–11 to the problem of sampling
design an estimate ofl true is required. This may be
obtained from previous studies, a pilot study or by
careful consideration of surrogate information on the
features likely to control the spatial field of interest.
For example, the topography might be relevant for
obtaining an initial estimate ofl true for soil moisture.
It is also important to sample sufficient points to
ensure that the variogram can be estimated accurately
(Western et al., 1998b).

The resampling analysis and the examples consid-
ered here have been simplified in that a change in
scale of a single component of the scale triplet (either
spacing, extent, or support) has been considered. In
some real world applications, a combined change of
scale will be called for when going from the scale of
the data (measurement scale) to the scale of the
predictions (modelling scale). A combined change
of scale (either upscaling or downscaling) of more
than one component of the scale triplet will have an
effect that is a mix of the individual effects. For exam-
ple, if we increase both extent and spacing, it is clear
that the combined effect will be an increase in the
variance and an increase in the apparent correlation
length. In fact upscaling any combination of spacing,
extent, or support will increase the correlation length.
However, the effect on the variance of upscaling both
extent and support will depend on the relative impor-
tance of the two individual effects.

The effect of scaling on the variance and the corre-
lation length has been analysed here for the case of a
small catchment. The main advantage of this study is
that real high resolution field data have been used and

it has been shown that geostatistical techniques are
indeed applicable for real soil moisture fields, even
if they are spatially organised rather than random. It
is clear that the principles shown here will also be
applicable at much larger scales. However, for these
scales it will be far more difficult to obtain high qual-
ity spatial soil moisture data. The principles shown
here will also be applicable to a much wider range
of scales than the two orders of magnitude examined
in this study. However, for a much wider range of
scales, the assumption of a stationary exponential
variogram will have to be reconsidered. For example,
if the scales are increased beyond that of the Tarra-
warra catchment, new sources of variability will come
in such as differences in land use, vegetation, soil type
and geology. For a range of, say, four orders of magni-
tude a nested exponential variogram may be more
appropriate than a single exponential variogram.
Work geared towards determining the larger scale
variability in the Tarrawarra region is under way
(Western et al., 1997).

6. Conclusions

In this paper the effect on the apparent spatial statis-
tical properties of soil moisture (variance and correla-
tion length) of changes in the measurement scale (in
terms of spacing, extent and support) has been exam-
ined using a resampling analysis. ‘Spacing’refers to
the distance between samples; ‘extent’ refers to the
overall coverage; and ‘support’ refers to the integra-
tion area. For the ideal case of very small spacings,
very large extents and very small supports, the appar-
ent variance and the apparent correlation length are
close to their true values. However, as the spacing
increases, the extent decreases or the support
increases, bias is introduced. Apparent correlation
lengths always increase when increasing spacing,
extent or support. Bias in the correlation length is
significant once spacing exceeds about twice the
true correlation length, once extent is smaller than
about 5 times the true correlation length, or once
support exceeds about 20% of the true correlation
length. The effect of extent on the correlation length
is the most important one of the three. The apparent
variance increases with increasing extent, decreases
with increasing support, and does not change with
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spacing. Bias in the variance is significant once extent
is smaller than about 5 times the true correlation
length, or once support exceeds about 20% of the
true correlation length. The effect of support on the
variances is the more important one of the two. All
these sources of bias are a function of the ratio of the
measurement scale (in terms of spacing, extent and
support) and the scale of the natural variability (i.e.
the true correlation length of soil moisture or process
scale). The effect of the modelling scale (in terms of
spacing, extent and support) is similar to that of the
measurement scale.

The results of the resampling analysis have been
compared to predictions of bias estimated using stan-
dard geostatistical techniques of regularisation and
variogram analysis. Specifically, we examined
whether these techniques are applicable to soil moist-
ure patterns. This was done because soil moisture
patterns exhibit spatial organisation, while geostatis-
tical techniques are based on the assumption of soil
moisture being a random variable. The comparison
indicates that these techniques are indeed applicable
for organised soil moisture patterns. The predictive
performance of the relationships given in Appendix
A is as good for surveys where soil moisture shows
spatial organisation as for surveys where the soil
moisture patterns are spatially random. This compar-
ison lends some credence to these geostatistical tech-
niques for hydrologic applications. A number of
examples are given to illustrate the potential applica-
tion and the importance of the spatial scaling of soil
moisture. These examples also illustrate how geosta-
tistical methods can be used in both modelling and
sampling design to assess the bias introduced by the
measurement scale and the modelling scale in terms
of spacing, extent and support.
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Appendix A

The analysis in the paper consists of three main
steps. The first step is an analysis of the full data
set, which gives the ‘‘true’’ variogram. The second
step is a resampling analysis in which the empirical
values of the apparent variance and integral scale are
estimated. The third step consists of estimating the
theoretical values of the apparent variance and inte-
gral scale directly from the ‘‘true’’ variogram. This
appendix gives the methods used in the third step.

We use an exponential variogram without nugget
for representing the ‘‘true’’ spatial variability of soil
moisture. The reason for doing this is that, in practice,
there are often insufficient data for inferring accurate
nugget values and hence, often nugget is assumed to
be zero. For consistency, we also use zero nuggets
when fitting variograms in the resampling analysis
and for the direct estimation of the theoretical
variance and integral scale from the ‘‘true’’ variogram
described in this appendix. The exception is the extent
case as nugget can be important for small extents. In
the extent case we therefore also examine a variogram
with a non-zero nugget. A second assumption is that
of local stationarity, i.e. a sill of the apparent vario-
gram exists at all scales and is equal to the (apparent)
variance of the data at that scale.

The apparent variance,s2
app, and the apparent inte-

gral scale,I app, for each of the cases of the scale triplet
‘‘support, extent, and spacing’’ are calculated as
follows. For clarity, the subscripts of the scales
aSupp, aExt, and aSpac are not written as they are
obvious from the section headings.

A.1. True variogram (no nugget)

The true variogram,g true, is assumed to be of the
form:

gtrue � s2
true· 1 2 exp

2h
ltrue

� �� �
�A1�

whereh is the lag. The sill is set to the variance of the
full data set,s2

true, and the correlation length,ltrue, is
estimated by fitting A.1 to the empirical variogram of
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the full data set. The true integral scale

Itrue �
Z∞

0
1 2

gtrue�x�
s2

true
dx �A2�

is simply

Itrue � ltrue �A3�

A.2. Support (regularisation)

The idea of regularisation is to obtain the properties
of an averaged process by running a linear filter over
the original point process, i.e. simple arithmetic aver-
aging applies. The filter is represented by a square of
side lengtha which is the support. The variance of the
averaged process,s2

app;Supp, is the total variance minus
the variance within the square,s2

within, (Journel and
Huijbregts, 1978):

s2
app;Supp� s2

true 2 s2
within �A4�

For an isotropic processs2
within can be obtained as

(Rodrı́guez-Iturbe and Mejı´a, 1974):

s2
within �

ZRmax

0
gtrue r� �·f1 r ua

ÿ �
dr �A5�

wherer is the distance between two randomly chosen
points in the square,Rmax is the maximum distance in
the square, andf1 r ua

ÿ �
is the probability density func-

tion (pdf) of the distances in the square of side length
a. f1 has been derived by Ghosh (1951) as

f1�r� � 4r

a4 f1�r� �A6�

where

f1 r� � � 1
2
pa2 2 2ar 1

1
2

r2

for 0 # r # a

f1 r� � � a2 sin21 a
r

2 cos21 a
r

� �
1 2a

���������
r2 2 a2

p
2

r2 1 2a2

2

for a , r #
��
2
p

a
The variogram of the averaged process can be

found in an analogous fashion to Eq. A5 by

gapp;Supp h;a� � �
ZRmax

0
gtrue�r�·f2�r uh;a�dr 2 s2

within

�A7�
wheref2 is the pdf of distances of two points each of
which is randomly located in one oftwo squares
where the two squares are separated by a (centre-to-
centre) distanceh and have side lengthsa. f2 was
evaluated by Sivapalan (1986) as:

f2�r� � 2r

a4 f2�r� �A8�

where

f2 r� � � a
���������
r2 2 e2

p
2
�r 2 e�2

2
2 eacos21 e

r

� �
for e # r #

����������
a2 1 e2
p

f2 r� � � a2

2
1 e�r 2

���������
r2 2 a2

p
�2 easin21 a

r

� �
for

����������
a2 1 e2
p

# r # h

f2 r� � � agcos21 h
r

� �
2 ea sin21 a

r

� �
2 cos21 h

r

� �� �

2e
���������
r2 2 a2

p
2 2a

���������
r2 2 h2

p
1

a2

2
1 h2 1 r2 2 gr

for h # r #
����������
a2 1 h2
p

f2 r� � � agsin21 a
r

� �
2 a2 1 g

���������
r2 2 a2

p
2 gr

for����������
a2 1 h2

p
# r # g

f2 r� � � ag sin21 a
r

� �
2 cos21 g

r

� �� �
1 g

���������
r2 2 a2

p

1a
���������
r2 2 g2

q
2

a2 1 r2 1 g2

2

for g # r #
����������
a2 1 g2

p
with e� h 2 a andg� h 1 a

The variogram of the averaged process can now be
used to calculate numerically the integral scale of the
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averaged process:

Iapp;Supp�
Z∞

0
1 2

gapp;Supp�x�
s2

app;Supp

dx �A9�

A.3. Extent

The apparent variance of a process with the extent
limited to a square of side lengtha is the variance
within the square (see Eq. A4 and Eq. A5):

s2
app;Ext � s2

within �A10�
The apparent variogram is identical with the true
variogram for lags that are small as compared to the
extent,a, and it is equal to the apparent variance for
lags that are large as compared to the extent. This is
consistent with the exact solution. For intermediate
lags it is assumed here, for simplicity, that there is a
sharp crossover atL wheregtrue�L� � s2

app;Ext

gapp;Ext � gtrue �A11�
for h # L

gapp;Ext � s2
app;Ext

for h . L

where

L � 2ltrue·ln 1 2
s2

app;Ext

s2
true

 !
The integral scale is:

Iapp;Ext �
Z∞

0
1 2

gapp;Ext�x�
s2

app;Ext

dx �A12�

which can be evaluated as:

Iapp;Ext � ltrue

s2
app;Ext

·
�
s2

app;Ext 1

�
s2

true 2 s2
app;Ext

�

·ln
�
1 2

s2
app;Supp

s2
true

��
�A13�

A.4. Spacing

For any correlation structure, the apparent variance

is equal to the true variance:

s2
app;Spac� s2

true �A14�
This is becauses2

app;Spac can be interpreted as the
variance ofn point samples which is close to the
population variance providedn is not too small
(Matalas, 1967). Here,n is large because the case
for changing the spacing is, notionally, for large
extents. The apparent variogram is estimated based
on the following simple assumptions: For lags larger
than the spacing,a, the apparent variogram is assumed
to be identical with the true variogram. For lags smal-
ler than the spacing,a, the variogram is assumed to be
linear between the origing�0� � 0 and g�a�. This
assumption is made because, in many practical
cases, when estimating the empirical variogram
there are only a small number of pairs of points for
lags smaller than the spacing (Russo and Jury, 1987)
and a straight line is the simplest approximation.

gapp;Spac�h� � h
a
gtrue�a� �A15�

for h # a

gapp;Spac�h� � gtrue�h�
for h . a

From Eq. A15 the integral scale can be calculated as:

Iapp;Spac

� ltrue exp
2a
ltrue

� �
1

a
2ltrue

: 1 1 exp
2a
ltrue

� �� �� �
�A16�

For small spacings (as compared to the correlation
length),Iapp;Spacis controlled by the correlation length,
ltrue, while for large spacings,Iapp;Spacis controlled by
the spacing,a.

A.5. Extent (with nugget)

For the case of changing the extent, and for small
extents (as compared to the correlation length), it may
be necessary to correct for the effect of nugget. The
true variogram (Eq. A1) now becomes:

gtrue;nugg� s2
nug 1 s2

true 2 s2
nug

� �
· 1 2 exp

2h
ltrue

� �� �
�A17�

wheres2
nug is the nugget andltrue is the correlation
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length estimated by fitting A.1 to the empirical vario-
gram of the full data set. In other words, the effect of
the nugget onltrue is neglected and hence the same
value ofltrue is used in Eqs. A.1 and A.17. The true
integral scale is

Itrue � ltrue 1 2
s2

nug

s2
true

 !
�A18�

The effect of the nugget can now be accommodated by
modifying Eq.. A10 which gives the apparent
variance:

s2
app;Ext;nug� s2

app;Ext 1 2
s2

nug

s2
true

 !
1 s2

nug �A19�

and by modifying Eq. A13 which gives the apparent
integral scale:

Iapp;Ext;nug� Itrue

s2
app;Ext;nug

�
s2

true

s2
true 2 s2

nug

�

×
�
s2

app;Ext;nug 2 s2
nug 1

�
s2

true 2 s2
app;Ext;nug

�

·ln
�
s2

true 2 s2
app;Ext;nug

s2
true 2 s2

nug

��
�A20�
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